Direkt zum Inhalt

28 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Mechanische Energie

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszusenden:

Formelzeichen:
Einheiten:
 
E mech
ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.

Artikel lesen

Wechselwirkungsgesetz

Wirken zwei Körper aufeinander ein, so wirkt auf jeden der Körper eine Kraft. Die Kräfte sind gleich groß und entgegengesetzt gerichtet:

F → 1 = − F → 2

Dieses Gesetz wurde von dem berühmten englischen Naturforscher ISAAC NEWTON (1643-1727) entdeckt. Es wird auch als 3. newtonsches Gesetz oder 3. newtonsches Axiom bezeichnet. Entsprechend seinem Inhalt spricht man auch vom Gegenwirkungsprinzip, von "actio = reactio" oder von "Kraft = Gegenkraft".

Artikel lesen

Gravitationsgesetz

Die zwischen zwei Körpern wirkende Gravitationskraft kann berechnet werden mit der Gleichung:

F = G ⋅ m 1 ⋅ m 2 r 2                        G            Gravitationskonstante                        m 1 ,   m 2    Massen der Körper                        r              Abstand der Massenmittelpunkte                                      der beiden Körper voneinander

Das Gravitationsgesetz wurde von ISAAC NEWTON (1643-1727) entdeckt.

Artikel lesen

Isaac Newton

* 1643 Woolsthorpe
† 1727 Kensington.
Er war ein englischer Physiker, Mathematiker und Astronom und einer der bedeutendsten Naturwissenschaftler der Geschichte. NEWTON entdeckte die Gravitation als universelle Kraft, die das Sonnensystem zusammenhält. Er fand die Grundgesetze der Mechanik und führte die Begriffe Kraft und Masse ein, entdeckte die Farbzerlegung des Lichtes und erklärte optische Erscheinungen mit seiner Korpuskeltheorie. In der Mathematik leistete NEWTON einen entscheidenden Beitrag zur Entwicklung der Differentialrechnung.

Artikel lesen

Newtonsches Grundgesetz

Zwischen Kraft, Masse und Beschleunigung gilt folgender Zusammenhang:
 

  F = m ⋅ a   
  Fauf den Körper einwirkende Kraft
  mMasse des Körpers
  aBeschleunigung des Körpers


Dieses Gesetz wurde von ISAAC NEWTON (1643-1727) entdeckt und beinhaltet einen grundlegenden Zusammenhang zwischen Kraft und Bewegung.

Artikel lesen

Trägheitsgesetz

Ein Körper bleibt in Ruhe oder in gleichförmiger geradliniger Bewegung, solange die Summe der auf ihn wirkenden Kräfte null ist:
F → = 0      ⇒      a → = 0      ⇒      v → =  konstant

Dieses Gesetz wurde von ISAAC NEWTON (1643-1727) entdeckt. Es wird auch als 1. newtonsches Gesetz oder 1. newtonsches Axiom bezeichnet.

Artikel lesen

Johannes Kepler

* 27.12.1571 Weil
† 15.11.1630 Regensburg

Er war einer der bedeutendsten Naturwissenschaftler der frühen Neuzeit und entdeckte die nach ihm benannten drei Gesetze der Planetenbewegung, die keplerschen Gesetze. Damit gehört er neben NIKOLAUS KOPERNIKUS, GALILEO GALILEI und ISAAC NEWTON zu den Wegbereitern eines neuen wissenschaftlichen Weltbildes, mit dem mittelalterliche Auffassungen überwunden und naturwissenschaftliche Erkenntnisse Grundlage der Vorstellungen wurden.

Artikel lesen

Isaac Newton

* 04.01.1643 Woolsthorpe
† 31.03.1727 Kensington.

ISAAC NEWTON war ein britischer Philosoph, Mathematiker und Mediziner. Er war einer der bedeutendsten Naturwissenschaftler der Geschichte. NEWTON entdeckte die Gravitation als universelle Kraft, die das Sonnensystem zusammenhält. Er fand die Grundgesetze der Mechanik und führte die Begriffe Kraft und Masse ein, entdeckte die Farbzerlegung des Lichts und erklärte optische Erscheinungen mit seiner Korpuskeltheorie. Seine Erkenntnisse zur Natur des Lichts, trugen maßgeblich zur Konstruktion verbesserter Mikroskope bei. In der Mathematik leistete NEWTON einen entscheidenden Beitrag zur Entwicklung der Differenzialrechnung.

Artikel lesen

Mikroskop

Nur mithilfe der Entwicklung der Mikroskopiertechnik konnte der Mensch selbst kleinste Strukturen sichtbar machen und so die natürlichen Grenzen des menschlichen Sehens überwinden. Ohne die Entwicklung der Mikroskopiertechnik hätten wir den heutigen biologischen Kenntnisstand nicht erreichen können. So wäre beispielsweise die moderne Gentechnik, Molekularbiologie oder Medizin ohne die extreme Vergrößerung von Zellen, Viren, Bakterien oder anderen Objekten undenkbar.
Ansätze der Mikroskopie sind bereits in der Antike zu erkennen. Bereits um 500 v. Chr. benutzten die Griechen und Römer Lupen als Brenngläser, um Objekte zu vergrößern, jedoch sollten bis zur Entwicklung des ersten Mikroskops noch rund 2 000 Jahre vergehen. Um 1637 entwickelte ANTONY VAN LEEUWENHOEK (1632-1723) eines der ersten Mikroskope, mit welchem er bereits Karies, den Aufbau von Samen, Früchten, Blüten und auch Augen verschiedener Tiere untersuchen konnte.

Artikel lesen

Isaac Newton

* 04.01.1643 Woolsthorpe
† 31.03.1727 Kensington.

Er war ein englischer Physiker, Mathematiker und Astronom und einer der bedeutendsten Naturwissenschaftler der Geschichte. NEWTON entdeckte die Gravitation als universelle Kraft, die das Sonnensystem zusammenhält. Er fand die Grundgesetze der Mechanik und führte die Begriffe Kraft und Masse ein, entdeckte die Farbzerlegung des Lichtes und erklärte optische Erscheinungen mit seiner Korpuskeltheorie. In der Mathematik leistete NEWTON einen entscheidenden Beitrag zur Entwicklung der Differenzialrechnung.

Artikel lesen

Physik und Gesellschaft

Zwischen der Entwicklung der Physik als Wissenschaft und der Entwicklung der Gesellschaft gibt es vielfältige Wechselwirkungen. Gesellschaftliche Verhältnisse können wissenschaftliche Arbeit nicht nur befördern und auf bestimmte Schwerpunkte lenken, sondern auch einschränken und behindern. Wissenschaftliche Entwicklungen und deren Anwendungen ihrerseits können gesellschaftliche Verhältnisse in erheblichem Maße beeinflussen.
Die Zusammenhänge zwischen Physik und Gesellschaft sind überaus komplex und vielgestaltig. Wir können sie nur aspekthaft beleuchten.

Artikel lesen

Bezugssysteme

Um den Ort und die Bewegung von Körpern oder ihren energetischen Zustand eindeutig beschreiben zu können, muss ein Bezug zu einem Vergleichskörper hergestellt werden, auf den sich die Angaben beziehen. Zur genauen Kennzeichnung des Ortes, an dem sich ein Körper jeweils befindet, ist darüber hinaus ein Koordinatensystem erforderlich.
Einen Bezugskörper und ein damit verbundenes Koordinatensystem bezeichnet man als Bezugssystem.
Seine Wahl ist willkürlich und zumeist dem jeweiligen Zweck angepasst. Dabei ist zwischen unbeschleunigten und beschleunigten Bezugssystemen zu unterscheiden.

Artikel lesen

Gravitation und Gravitationsgesetz

Alle Körper ziehen sich aufgrund ihrer Massen gegenseitig an. So zieht z. B. die Erde den Mond an. Umgekehrt zieht auch der Mond die Erde an.
Die gegenseitige Anziehung von Körpern aufgrund ihrer Massen wird Massenanziehung oder Gravitation (gravis, lat.: schwer) genannt. Die dabei wirkenden Kräfte werden als Schwerkräfte oder als Gravitationskräfte bezeichnet.
Die Gravitationskraft zwischen zwei Körpern kann mit dem Gravitationsgesetz berechnet werden. Sie ist umso größer,

  • je größer die Massen der Körper sind und
  • je kleiner der Abstand ihrer Massenmittelpunkte voneinander ist.
Artikel lesen

Farbenlehre von Goethe

Grundlegende Versuche zu Licht und seinen Farben führte erstmals ISAAC NEWTON (1643-1727) durch. Er zerlegte weißes Licht mithilfe eines Prismas in Spektralfarben, vereinigte die Spektralfarben wieder zu weißem Licht und fand die Komplementärfarben.
Mit der Frage der Farbe von Licht und den damit verbundenen Erscheinungen beschäftigten sich aber nicht nur Physiker, sondern auch Maler, Physiologen, Psychologen und Schriftsteller, unter ihnen auch JOHANN WOLFGANG VON GOETHE (1749-1832). GOETHE versuchte die newtonsche Farbenlehre zu widerlegen und stellte eine eigene Farbenlehre auf, die aber mehr ästhetischen Gesichtspunkten als wissenschaftlichen Maßstäben entsprach.

Artikel lesen

Interferenz an dünnen Schichten

Die Flügel einer Libelle, eine dünne Ölschicht auf Wasser oder eine Seifenblase schillern in den unterschiedlichsten Farben. Ursache dafür ist die Interferenz von Licht, das auf eine dünne Schicht trifft und an der Vorder- und der Rückseite dieser Schicht reflektiert wird. Das an verschiedenen Stellen reflektierte Licht überlagert sich. Es kommt zu farbigen Interferenzmustern.
Wichtige Fälle, die sich auch gut mathematisch beschreiben lassen, sind die Interferenz an planparallelen Schichten und die Interferenz an keilförmigen Schichten. Ein spezieller Fall sind die newtonsche Ringe, mit deren Hilfe man z.B. die Qualität von Linsen prüfen kann.

Artikel lesen

Mikroskop

Nur mithilfe der Entwicklung der Mikroskopiertechnik konnte der Mensch selbst kleinste Strukturen sichtbar machen und so die natürlichen Grenzen des menschlichen Sehens überwinden. Ohne die Entwicklung der Mikroskopiertechnik hätten wir den heutigen biologischen Kenntnisstand nicht erreichen können. So wäre beispielsweise die moderne Gentechnik, Molekularbiologie oder Medizin ohne die extreme Vergrößerung von Zellen, Viren, Bakterien oder anderen Objekten undenkbar.
Ansätze der Mikroskopie sind bereits in der Antike zu erkennen. Bereits um 500 v. Chr. benutzten die Griechen und Römer Lupen als Brenngläser, um Objekte zu vergrößern, jedoch sollten bis zur Entwicklung des ersten Mikroskops noch rund 2 000 Jahre vergehen. Um 1637 entwickelte ANTONY VAN LEEUWENHOEK (1632-1723) eines der ersten Mikroskope, mit welchem er bereits Karies, den Aufbau von Samen, Früchten, Blüten und auch Augen verschiedener Tiere untersuchen konnte.

Artikel lesen

Die Aufklärung – Der Beginn der Neuzeit

Nachdem die ersten wissenschaftlichen Erkenntnisse überwiegend auf vergleichende Beobachtungen und Beschreibungen beruhten, konnten nunmehr die Erkenntnisse anderer Naturwissenschaften wie Mathematik und Physik herangezogen werden, um biologische Gesetzmäßigkeiten zu erklären. Die Erfolge führten allerdings auch zu Überschätzungen der physikalischen Erklärungsmöglichkeiten.

Artikel lesen

Entwicklung der Vorstellungen über das Licht

Mit optischen Erscheinungen und dem Wesen des Lichtes haben sich seit dem Altertum zahlreiche Wissenschaftler beschäftigt. Die Frage, was Licht ist, blieb dabei viele Jahrhunderte lang ungeklärt. Die geschichtlich wichtigsten Vorstellungen über das Licht sind zusammengefasst in der Korpuskulartheorie, in der Wellentheorie und in der Lichtquantentheorie.

Artikel lesen

Farbwahrnehmung

Farbensehen ist ein sehr umfangreiches und bis in die Gegenwart widersprüchliches Phänomen.Physikalisch gesehen sind Farben Lichtwellen unterschiedlicher Frequenzen (Wellenlängen).

Artikel lesen

Gottfried Wilhelm Leibniz

* 01.07.1646 in Leipzig
† 14.11.1716 in Hannover

GOTTFRIED WILHELM LEIBNIZ war der bedeutendste Universalgelehrte seiner Zeit, besonderen Ruhm erwarb er als Mathematiker und Philosoph.

Artikel lesen

Johannes Kepler

* 27.12.1571 Weil
† 15.11.1630 Regensburg

Er war einer der bedeutendsten Astronomen der frühen Neuzeit und entdeckte die nach ihm benannten drei Gesetze der Planetenbewegung, die keplerschen Gesetze. Damit gehört er neben NIKOLAUS KOPERNIKUS, GALILEO GALILEI und ISAAC NEWTON zu den Wegbereitern eines neuen wissenschaftlichen Weltbildes, mit dem mittelalterliche Auffassungen überwunden und naturwissenschaftliche Erkenntnisse Grundlage der Vorstellungen wurden.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Artikel lesen

Kraftstoß und Impuls

Der Kraftstoß kennzeichnet die zeitliche Wirkung einer Kraft auf einen Körper. Der Impuls dagegen ist eine Größe, die den Bewegungszustand eines Körpers unter Einbeziehung seiner Masse charakterisiert. Zwischen diesen beiden Größen besteht ein enger Zusammenhang. Jeder Kraftstoß ist mit einer Impulsänderung verbunden:
F → ⋅ Δ t = m ⋅ Δ v → oder I → = Δ p →
Während der Kraftstoß einen Vorgang kennzeichnet und damit eine vektorielle Prozessgröße ist, beschreibt der Impuls den Bewegungszustand eines Körpers und ist eine vektorielle Zustandsgröße.

Artikel lesen

Isaac Newton

* 04.01.1643 Woolsthorpe
† 31.03.1727 Kensington.

Er war ein englischer Physiker, Mathematiker und Astronom und einer der bedeutendsten Naturwissenschaftler der Geschichte. NEWTON entdeckte die Gravitation als universelle Kraft, die das Sonnensystem zusammenhält. Er fand die Grundgesetze der Mechanik und führte die Begriffe Kraft und Masse ein, entdeckte die Farbzerlegung des Lichtes und erklärte optische Erscheinungen mit seiner Korpuskeltheorie. In der Mathematik leistete NEWTON einen entscheidenden Beitrag zur Entwicklung der Differentialrechnung.

Artikel lesen

Das newtonsches Grundgesetz (2. newtonsches Gesetz)

ISAAC NEWTON (1643-1727) entdeckte einen grundlegenden Zusammenhang zwischen Kraft, Masse und Beschleunigung, der als 2. newtonsches Gesetz, Grundgesetz der Mechanik oder newtonsches Grundgesetz bezeichnet wird und lautet:

F → = m ⋅ a → F auf einen Körper wirkende (resultierende) Kraft m Masse des Körpers a Beschleunigung des Körpers

Etwas allgemeiner kann man auch formulieren:

F → = Δ p → Δ t   oder in differenzieller Schreibweise F → = d p → d t   Dabei bedeuten: Δ p → , d p → Impulsänderung des Körpers Δ t , d t Zeitintervall

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Next Page

28 Suchergebnisse

Fächer
  • Biologie (5)
  • Geschichte (2)
  • Kunst (1)
  • Physik (20)
Klassen
  • 5. Klasse (11)
  • 6. Klasse (11)
  • 7. Klasse (11)
  • 8. Klasse (11)
  • 9. Klasse (11)
  • 10. Klasse (11)
  • Oberstufe/Abitur (20)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025