Direkt zum Inhalt

25 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Glykolyse

Glykolyse wurde von den griechischen Wörtern glycos = süß und lysis = Auflösung abgeleitet. Damit ist die Spaltung von Traubenzucker gemeint. Sie findet im Cytoplasma der Zellen statt. Bei der aeroben Glykolyse (Sauerstoffanwesenheit) wird ein Glucosemolekül mit 6 C-Atomen unter Energiegewinn in Form von ATP in zwei Pyruvat-Ionen mit 3 C-Atomen gespalten. Pyruvate sind die Anionen der Brenztraubensäure, welche im Citratzyklus weiterverwertet werden. Unter anaeroben Bedingungen (Sauerstoffabwesenheit) wird das Pyruvat in Lactat (Milchsäure) oder Ethanol umgewandelt. Dieser Weg der anaeroben Verwertung von Glucose ist der älteste biochemische Mechanismus zur Energiegewinnung, welcher auch die Entwicklung von lebenden Organismen in sauerstofffreier Atmosphäre ermöglichte.

Artikel lesen

Phosphofructokinase regelt als allosterisches Enzym die ADP/ATP-Produktion

Das Schlüsselenzym Phosphofructokinase verhindert, dass Körpersubstanz über das notwendige Maß hinaus veratmet wird. Steigt die ATP- und Citratproduktion an, dann wird sie durch das Enzym gehemmt.

Artikel lesen

Zellatmung im Überblick

Zellen nehmen zu ihrer Energieversorgung Glucose (Traubenzucker) auf, welche im Cytoplasma und in den Mitochondrien von Eukaryoten (Lebewesen, deren Zellen einen Zellkern besitzen) vollständig zu Kohlenstoffdioxid und Wasser abgebaut wird. Am Ende des Abbauweges gewinnt die Zelle mit Hilfe der frei werdenden Energie die energiereiche Verbindung ATP, die für viele Stoffwechselvorgänge als universelle Energiequelle für den Organismus erforderlich ist. Zur Zellatmung zählen die Prozesse der Glykolyse, des Citratzyklus und der Atmungskette.

Artikel lesen

Atmungskette

Die Atmungskette ist der letzte Schritt des in den Mitochondrien stattfindenden Glucoseabbaus und schließt sich an Glykolyse und Citratzyklus an. Die während des Citratzyklus entstandenen Coenzyme NADH und FADH 2 übertragen ihren Wasserstoff an Sauerstoff und bilden somit Wasser – eine Knallgasreaktion mitten in der Zelle - würde diese Reaktion nicht auf viele harmlose Schritte aufgespalten ablaufen – die Atmungskette. Als Endprodukt entsteht ATP, welches dem Organismus als Energie zur Verfügung steht.
Die Enzyme der Atmungskette sind bei Prokaryoten in der Cytoplasmamembran, bei Eukaryoten in der inneren Mitochondrienmembran lokalisiert. Sie bilden eine Reihe/Kette von Redoxsystemen, durch die Elektronen stufenweise in Richtung positiveres Potenzial transportiert werden. Integrale Membranproteine pumpen an drei Stellen der Reaktionskette Protonen durch die Membran, da diese nicht ohne Weiteres die Biomembranen passieren können. Es gibt drei verschiedene Transportarten für Elektronen in der Atmungskette: die ausschließliche Elektronenübertragung ( Fe 3+ zu Fe 2+ ), die Übertragung eines Wasserstoffatoms ( H +   +   e - ) oder die Übertragung eines Hydridions ( H - ).

Artikel lesen

ATP – Energieüberträger in Zellen oder in Lebewesen

Energie kann viele Zustandsformen haben: Lichtenergie, Wärmeenergie, elektrische Energie oder chemische Energie. Lebende Organismen benötigen zum Aufrechterhalt ihrer Lebensfunktionen chemische Energie. Diese wird durch bestimmte chemische Eigenschaften gespeichert und kann bei Bedarf abgerufen werden, um in Arbeit umgewandelt zu werden. Der wichtigste chemische Energiespeicher der Lebewesen ist ATP (Adenosintriphosphat).

Artikel lesen

ATP-Synthase

Die Bildung von ATP aus ADP und P erfolgt mit Hilfe des Enzyms ATP-Synthase. Dieses Enzym besteht aus zwei Teilen. Der F 0 -Teil besitzt einen Tunnel, durch den die Protonen wandern. Sie bringen den F 1 -Teil , an dem drei aktive Zentren sitzen, zum Rotieren. An diese Zentren lagert sich abwechselnd ADP und P an und reagiert zu ATP. Das Enzym wirkt wie ein Rad. Auf der einen Seite wird ADP und P aufgenommen, auf der anderen ATP entlassen.

Artikel lesen

Speicherung von chemischer Energie

Autotrophe Organismen stellen aus energiearmen, anorganischen und körperfremden Stoffen energiereiche, organische und körpereigene Stoffe unter Ausnutzung einer äußeren Energiequelle her. Ausgangsgangsstoff für die Bildung der organischen Stoffe sind die gebildeten Glycerinaldehyd-3-phosphatmoleküle bzw. die Glucosemoleküle aus dem CALVIN-Zyklus. Unter anderem mit Hilfe von Mineralstoffen werden dann Kohlenhydrate, Fette, Eiweiße und andere organische Stoffe hergestellt.
Heterotrophe Organismen nehmen diese organischen Stoffe mit der Nahrung auf und bauen sie im Körper entsprechend ihres Bedarfs unter Ausnutzung derer Energie um. Andere entstehende Produkte, wie z. B. Vitamine oder Ballaststoffe nehmen als Wirk- und Ergänzungsstoffe in der täglichen Nahrung einen wichtigen Platz ein.
Aus dem Glycerinaldehyd-3-phosphat des CALVIN-Zyklus werden über Zwischenprodukte weitere Kohlenhydrate wie Glucose, Saccharose, Cellulose und Stärke gebildet.
Bakterien, die zur Fotosynthese befähigt sind, stellen statt Stärke Glykogen her. Fette bestehen aus Glycerin und Fettsäuren. Die Herstellung von Fettsäuren kann im Cytoplasma, in den Chloroplasten und teilweise im Mitochondrium erfolgen, die anschließend in den Chloroplasten mit Glycerin zu Fetten reagieren. Die Einzelbausteine der Eiweiße (Proteine) sind Aminosäuren.
Pflanzen verwenden Nitrate aus der Luft, über die Knöllchenbakterien fixierten Stickstoff oder direkt aufgenommene Ammonium-Ionen zur Bildung von Aminosäuren. Die entstandenen Aminosäuren können später ineinander umgewandelt werden. Die gebildeten Kohlenhydrate, Fette und Eiweiße bzw. ihre Bausteine stellen dann die Grundlage für die Synthese anderer organischer Stoffe dar.

Artikel lesen

Chemosynthese (Chemolithoautotrophie)

Chemolithoautotrophie (auch Chemosynthese) ist eine Form des chemotrophen Energiestoffwechsels (Chemotrophie), bei dem anorganische Verbindungen oder Ionen die Reduktionsäquivalente für den Energiegewinn liefern. Chemosynthese betreiben chlorophyllfreie Prokaryoten. SIe kommt bei Bodenbakterien und Wasserbakterien vor. Dieser Prozess wurde von SERGEJ NIKOLAJEWITSCH WINOGRADSKIJ (1856-1953) bei den Schwefel oxidierenden Bakterien, Eisen oxidierenden Bakterien (1887, 1889) und den nitrifizierenden Bakterien (1890) entdeckt.
Bei der Chemolithoautotrophie werden durch die Oxidation von anorganischen Stoffen ATP als Energiequelle und das Reduktionsmittel NADH + H + als Voraussetzungen für die Herstellung von Kohlenhydraten im CALVIN-Zyklus bereitgestellt.

Artikel lesen

Coenzyme und Cofaktoren

Coenzyme und Cofaktoren sind niedrigmolekulare, nichtproteinartige Bestandteile von Enzymen. Coenzyme (latein. cum = zusammen, mit) sind komplexe organische Moleküle (Vitamine, Nucleotide), die meist nur locker oder vorübergehend, seltener kovalent (fest) an den Proteinanteil des Enzyms (Apoenzym) gebunden sind.
Bei Cofaktoren handelt es sich um Metallionen wie K + , Na + , Mg 2+ , Cu 2+ oder Fe 2+ , die in dieser Form als Elektronenakzeptoren dienen.

Artikel lesen

Die Nährstoffe der Nahrung enthalten Energie

Zur Erhaltung der Lebensfunktionen benötigt der Körper täglich Energie. Energieträger sind die Nährstoffe der Nahrung. Die meiste Energie ist in Fetten gespeichert.
Der Energiebedarf (Leistungsumsatz) richtet sich nach der körperlichen Betätigung. Durch Bewegungsarmut und zu viel energiereiche Nahrung ist Übergewichtigkeit zum gesundheitlichen Problem in Industriestaaten geworden. Der Körper kann ein Zuviel der energiereichen Nahrung nicht mehr abbauen und speichert es als Reserve. Als Folge bilden sich Fettpolster, deren Abbau einen hohen körperlichen Energieaufwand benötigt. Auch andere Erkrankungen, die sowohl das Essverhalten als auch die beteiligten Organe betreffen, nehmen ständig zu.

Artikel lesen

Energieübertragung in der Zelle

Das Coenzym ATP ist in allen Zellen die wichtigste Form chemischer Energie. ATP ist die biochemische Batterie, in der die Energie aus den Nährstoffen gespeichert wird. Halbleer heißt diese Batterie ADP.
Die gewonnene Energie ( Δ G ) wird genutzt, um endergone Vorgänge wie Biosynthesen, Bewegungs- und Transportprozesse anzutreiben. Der größte Teil zellulären ATPs entsteht durch oxidative Phosphorylierung in den Mitochondrien oder durch Fotophosphorylierung in den Chloroplasten. Weit weniger ATP wird über die Anlagerung/Übertragung anorganischer Phosphatreste von organischen Molekülen auf ADP erzeugt. Die oxidative Phosphorylierung ist allerdings von der Anwesenheit von Sauerstoff abhängig (aerobe Bedingungen). Als oxydative Phosphorylierung bezeichnet man eine komplizierte Folge von chemischen Reaktionen, welche die Funktion haben, die Energie, die bei der Oxidation eines Substrates mit Sauerstoff freigesetzt wird, in chemischer Form, als ATP, zu speichern.

Artikel lesen

Fotophosphorylierung

Die Fotophosphorylierung beschreibt die Bildung von Adenosintriphosphat (ATP) durch die Anlagerung einer Phosphatgruppe an Adenosindiphosphat (ADP) unter dem Einfluss von Lichtenergie. Der ablaufende Mechanismus der ATP-Bildung im Chloroplasten und die ATP-Bildung im Mitochondrium während der Endoxidation bei der Zellatmung sind grundlegend gleich und werden als Chemiosmose bezeichnet. Es entsteht im Laufe der Lichtreaktionen ein Konzentrationsunterschied an Protonen zwischen Thylakoidinnenraum und Stroma, in dessen Endergebnis durch den angestrebten Konzentrationsausgleich enzymatisch ATP gebildet wird. Je nach Weg der Elektronen bei den lichtabhängigen Reaktionen unterscheidet man zwischen nichtzyklischer und zyklischer Fotophosphorylierung.

Artikel lesen

Atome, Struktur

Die erste Hälfte des 20. Jahrhunderts stand ganz im Zeichen der Kernphysik und der Quantenchemie. Die neu entdeckten radioaktiven Strahlen ermöglichten neue Experimente, die zur rasanten Weiterentwicklung des Atommodells von RUTHERFORD (1911) über BOHR (1913) bis hin zum modernen quantenmechanischen Atommodell (1927) führten. Das verbesserte Verständnis der Struktur der Materie wird auch an der Weiterentwicklung der Bindungstheorie deutlich.
Durch kernchemische Experimente wurden neue Elemente entdeckt, darunter das hoch radioaktive Plutonium. Während des 2. Weltkriegs stellten sich Chemiker und Physiker in den Dienst des Militärs und entwickelten neue Sprengstoffe, giftige Kampfstoffe sowie die erste Atombombe.
Biochemiker erkundeten die Strukturen von Naturstoffen und konnten diese nach und nach im Labor synthetisieren. Beispiele sind die Eiweiße, die Vitamine und die Hormone, deren Wirkprinzipien in biochemischen Prozessen erkannt wurden. Außerdem gewann die Synthese von Arzneistoffen (Antibiotika, Schmerzmittel etc.) zunehmend an Bedeutung und wurde ebenfalls industriell durchgeführt.
Die chemische Industrie erlebte einen ungeahnten Aufschwung, da neben Medikamenten auch der Bedarf an Erdölprodukten stieg. Diese wurden sowohl zu Kraftstoffen verarbeitet als auch zu den neuen Werkstoffen des 20. Jahrhunderts, den makromolekularen Kunststoffen. Das Zeitalter der Plaste, Elaste und Kunstfasern begann in den 30er-Jahren mit der Beherrschung der großtechnischen Synthesen von PVC, Nylon, Polyurethanen und Siliconen.

Artikel lesen

Stoff- und Energiewechselprozesse

In jeder lebenden Zelle laufen Stoff- und Energiewechselprozesse ab. Die Fotosynthese, die Atmung, die alkoholische Gärung und die Milchsäuregärung gehören zu den Stoff- und Energiewechselprozessen.

Der Stoff- und Energiewechsel ist die Aufnahme von Stoffen und Energie in die Zellen, die Umwandlung von Stoffen und Energie in den Zellen und die Abgabe von Stoffen und Energie aus den Zellen. In den Zellen werden ständig körpereigene organische Stoffe aufgebaut (Assimilation) und organische Stoffe zur Nutzbarmachung der in ihnen enthaltenen chemischen Energie abgebaut (Dissimilation).

Artikel lesen

Energiereserven und Hungern

Beim Hungern laufen biochemische, physiologische sowie psychische Prozesse und Regelkreise ab. Ausgelöst werden sie durch das Sinken des Glucosespiegels im Blut. Bei den biochemischen Prozessen stellt der Körper auf die Bildung von Glucose aus Eiweiß und Fett (Gluconeogenese) um, wenn die Glykogenreserven in der Leber erschöpft sind. Auf diese Weise werden zuerst die Fettdepots aufgebraucht. Später beginnt die Eiweißverdauung von Muskeleiweiß. Da die osmotische Wirkung des Blutes nachlässt, entstehen Hungerödeme.

Artikel lesen

Zellatmung

Zellen nehmen zu ihrer Energieversorgung Glucose (Traubenzucker) auf, welche im Cytoplasma und in den Mitochondrien von Eukaryoten vollständig zu Kohlenstoffdioxid und Wasser abgebaut wird. Am Ende des Abbauweges gewinnt die Zelle mit Hilfe der frei werdenden Energie die energiereiche Verbindung ATP, die für viele Stoffwechselvorgänge als universelle Energiequelle für den Organismus erforderlich ist. Zur Zellatmung zählen die Prozesse der Glykolyse, des Citratzyklus und der Atmungskette.

Artikel lesen

Fotophosphorylierung

Fotophosphorylierung beschreibt die Bildung von Adenosintriphosphat (ATP) durch die Anlagerung einer Phosphatgruppe an Adenosindiphosphat (ADP) unter dem Einfluss von Lichtenergie. Der ablaufende Mechanismus der ATP-Bildung im Chloroplast und die ATP-Bildung im Mitochondrium während der Endoxidation bei der Zellatmung sind grundlegend gleich und werden als Chemiosmose bezeichnet. Es entsteht im Laufe der Lichtreaktionen ein Konzentrationsunterschied an Protonen zwischen Thylakoidinnenraum und Stroma, in dessen Endergebnis durch den angestrebten Konzentrationsausgleich enzymatisch ATP gebildet wird. Je nach Weg der Elektronen bei den lichtabhängigen Reaktionen unterscheidet man zwischen nichtzyklischer und zyklischer Fotophosphorylierung.

Artikel lesen

Glykolyse

Glykolyse wurde von den griechischen Wörtern glycos = süß und lysis = Auflösung abgeleitet. Damit ist die Zuckerspaltung gemeint. Sie findet im Cytoplasma der Zellen statt. Bei der aeroben Glykolyse (Sauerstoffanwesenheit) wird ein Glucosemolekül mit 6 C-Atomen unter Energiegewinn in Form von ATP in zwei Pyruvat-Ionen mit 3 C-Atomen gespalten. Pyruvate sind die Anionen der Brenztraubensäure, welche im Citronensäurezyklus weiter verwertet werden. Unter anaeroben Bedingungen (Sauerstoffabwesenheit) ist das Endprodukt der Glykolyse Lactat (Milchsäure) oder Ethanol. Dieser Weg der anaeroben Verwertung von Glucose ist der älteste biochemische Mechanismus zur Energiegewinnung, welcher auch die Entwicklung von lebenden Organismen in sauerstofffreier Atmosphäre ermöglichte.

Artikel lesen

Die Aufklärung der inneren Struktur der Atome (1901-1950)

Die erste Hälfte des 20. Jahrhunderts stand ganz im Zeichen der Kernphysik und der Quantenchemie. Die neu entdeckten radioaktiven Strahlen ermöglichten neue Experimente, die zur rasanten Weiterentwicklung des Atommodells von RUTHERFORD (1911) über BOHR (1913) bis hin zum modernen quantenmechanischen Atommodell (1927) führten. Das verbesserte Verständnis der Struktur der Materie wird auch an der Weiterentwicklung der Bindungstheorie deutlich.
Durch kernchemische Experimente wurden neue Elemente entdeckt, darunter das hoch radioaktive Plutonium. Während des 2. Weltkriegs stellten sich Chemiker und Physiker in den Dienst des Militärs und entwickelten neue Sprengstoffe, giftige Kampfstoffe sowie die erste Atombombe.
Biochemiker erkundeten die Strukturen von Naturstoffen und konnten diese nach und nach im Labor synthetisieren. Beispiele sind die Eiweiße, die Vitamine und die Hormone, deren Wirkprinzipien in biochemischen Prozessen erkannt wurden. Außerdem gewann die Synthese von Arzneistoffen (Antibiotika, Schmerzmittel etc.) zunehmend an Bedeutung und wurde ebenfalls industriell durchgeführt.
Die chemische Industrie erlebte einen ungeahnten Aufschwung, da neben Medikamenten auch der Bedarf an Erdölprodukten stieg. Diese wurden sowohl zu Kraftstoffen verarbeitet als auch zu den neuen Werkstoffen des 20. Jahrhunderts, den makromolekularen Kunststoffen. Das Zeitalter der Plaste, Elaste und Kunstfasern begann in den 30er-Jahren mit der Beherrschung der großtechnischen Synthesen von PVC, Nylon, Polyurethanen und Siliconen.

Artikel lesen

Muskeln

Die Muskulatur des Menschen nimmt einen Anteil von ca. 50 % an der Gesamtkörpermasse ein. Die Muskeln kontrahieren aktiv, können aber nur passiv gedehnt werden. Die Dehnung erfolgt oft durch einen Gegenspieler (Antagonisten). Muskelpaare, die gleichförmig arbeiten, bezeichnet man als Synergisten.

Je nach der Belastungsart unterscheidet man zwischen:
 
  • isotonischer und
  • isometrischer Kontraktion.
  

Das Verrichten von Muskelarbeit erfordert den Einsatz von Energie in Form von ATP (Adenosintriphosphat) bzw. KTP (Kreatintriphosphat). Die Muskelarbeit wird von mehreren Faktoren beeinflusst. Um eine dauerhafte Steigerung der Leistungsfähigkeit zu erreichen, müssen diese Faktoren durch ein gezieltes, regelmäßiges Training gefördert werden. Es wird zwischen Ausdauer- und Krafttraining unterschieden.
Eine Überforderung des Bewegungssystems kann zu Muskelverletzungen (Muskelverhärtung, Muskelkater u. a.) führen. Ein Abbruch des Trainings führt zum Verlust der erzielten Wirkungen auf die verschiedenen Organsysteme (Herz-Kreislauf-System u. a.).

Artikel lesen

Energiespeichersysteme

Kein Organismus kann ohne Energie existieren. Wir müssen uns Energie durch Nahrungsaufnahme zuführen, Pflanzen nutzen die Energie des Sonnenlichts. Unsere technischen Geräte können ebenfalls nicht ohne Energie betrieben werden. Sowohl für Organismen als auch für die Funktionsfähigkeit der Geräte ist es wichtig, dass die Energie immer genau dann in ausreichender Menge zur Verfügung steht, wenn sie benötigt wird. Eine Voraussetzung dafür ist die Speicherung von Energie, die in Natur und Technik mithilfe verschiedenster Energiespeichersysteme realisiert wird.

Artikel lesen

Energieübertragung in der Zelle

Das Coenzym ATP ist in allen Zellen die wichtigste Form chemischer Energie. ATP ist die biochemische Batterie, in der die Energie aus den Nährstoffen gespeichert wird. Halbleer heißt diese Batterie ADP, ganz leer AMP.
Die gewonnene Energie ( Δ G ) wird genutzt, um endergone Vorgänge wie Biosynthesen, Bewegungs- und Transportprozesse anzutreiben. Der größte Teil zellulären ATPs entsteht durch oxidative Phosphorylierung in den Mitochondrien oder Chloroplasten. Weit weniger ATP wird über die Anlagerung/Übertragung anorganischer Phosphatreste von organischen Molekülen auf ADP erzeugt. Die oxidative Phosphorylierung ist allerdings von der Anwesenheit von Sauerstoff abhängig (aerobe Bedingungen). Als oxydative Phosphorylierung bezeichnet man eine komplizierte Folge von chemischen Reaktionen, welche die Funktion haben, die chemische Energie, die bei der Oxidation eines Substrates mit Sauerstoff entsteht, in chemischer Form von ATP zu speichern. ATP ist also nicht nur Baustein der Nukleinsäuren, sondern auch der wichtigste Energieträger in der Zelle.

Artikel lesen

Atmungskette

Die Atmungskette ist der letzte Schritt des in den Mitochondrien stattfindenden Glukoseabbaus und schließt sich an die Glykolyse und den Citratzyklus an. Die während des Citratzyklus entstandenen Coenzyme NADH 2+ und FADH 2 übertragen ihren Wasserstoff an Sauerstoff und bilden somit Wasser – eine Knallgasreaktion mitten in der Zelle - würde diese Reaktion nicht auf viele harmlose Schritte aufgespalten ablaufen – die Atmungskette. Als Endprodukt entsteht ATP, welches dem Organismus als Energie zur Verfügung steht.
Die Enzyme der Atmungskette sind bei Prokaryoten in der Cytoplasmamembran, bei Eukaryoten in der inneren Mitochondrienmembran lokalisiert. Sie bilden eine Reihe/Kette von Redoxsystemen, durch die Elektronen stufenweise in Richtung positiveres Potenzial transportiert werden. Integrale Membranproteine pumpen an drei Stellen der Reaktionskette Protonen durch die Membran, da diese nicht ohne Weiteres die Biomembranen passieren können. Es gibt drei verschiedene Transportarten für Elektronen in der Atmungskette: die ausschließliche Elektronenübertragung ( Fe 3+ zu Fe 2+ ), die Übertragung eines Wasserstoffatoms ( H +   +   e - ) oder die Übertragung eines Hydridions ( H - ).

Artikel lesen

Chemosynthese

Chemosynthese (auch Chemolithotrophie oder Chemoautotrophie) ist eine Form des chemotrophen Energiestoffwechsels (Chemotrophie), bei dem anorganische Verbindungen oder Ionen die Reduktionsäquivalente für den Energiegewinn liefern. Chemosynthese betreiben chlorophyllfreie Prokaryoten. Sie kommt bei Bodenbakterien und Wasserbakterien vor. Dieser Prozess wurde von SERGEJ NIKOLAJEWITSCH WINOGRADSKIJ (1856-1953) bei den schwefeloxidierenden Bakterien, eisenoxidierenden Bakterien (1887, 1889) und den nitrifizierenden Bakterien (1890) entdeckt.
Bei der Chemolithotrophie werden durch die Oxidation von anorganischen Stoffen ATP als Energiequelle und das Reduktionsmittel NADH + H + als Voraussetzungen für die Herstellung von Kohlenhydraten im CALVIN-Zyklus bereitgestellt. Bei der ersten Phase werden u.a. durch Nitrifikation oder Schwefeloxidation die Voraussetzungen für den CALVIN-Zyklus gebildet. Besondere Bedeutung haben u.a. nitrifizierende Bakterien im Rahmen des Stickstoffkreislaufs oder Schwefelbakterien für die Reinigung der Abwässer.

Artikel lesen

Enzymregulation

Enzyme dürfen im Organismus nicht permanent wirksam sein, weil ansonsten alle biochemischen Reaktionen gleichzeitig mit relativ hoher Geschwindigkeit ablaufen würden. Zum einen hängt die Enzymaktivität von der Temperatur, dem pH-Wert und der Konzentration des Substrats ab.
Außerdem wird die Aktivität von Enzymen nach verschiedenen Mechanismen reguliert. Durch Inhibitoren können Enzyme reversibel oder irreversibel gehemmt werden. Die reversible Enzymhemmung kann nach einem kompetitiven oder einem nicht kompetitiven Mechanismus erfolgen. Ein Sonderfall der nicht kompetitiven Hemmung ist die allosterische Regulation.

25 Suchergebnisse

Fächer
  • Biologie (14)
  • Chemie (11)
Klassen
  • 5. Klasse (2)
  • 6. Klasse (2)
  • 7. Klasse (2)
  • 8. Klasse (2)
  • 9. Klasse (2)
  • 10. Klasse (2)
  • Oberstufe/Abitur (23)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025