Rang einer Matrix

  • Definition: Der Rang r einer Matrix M ist gleich der Anzahl ihrer linear unabhängigen Zeilen- oder Spaltenvektoren.
    Schreibweise: r=RgM   

Der Rang einer Matrix kann nicht größer sein als das Minimum der Zahl der Zeilen oder Spalten.

Untersuchungen zum Rang einer Matrix spielen etwa bei folgenden Anwendungen eine Rolle:

  1. Bestimmung der Lösungsmöglichkeiten von linearen Gleichungssystemen
  2. Voraussetzung für die Invertierung einer (quadratischen) Matrix

Möglichkeiten der Rangberechnung

(1) Berechnen der linear unabhängigen Zeilen oder Spalten durch Anwendung elementarer Matrizenoperationen

Es ist die Zahl der vom Nullvektor verschiedenen Zeilen zu ermitteln. Dies erfolgt am günstigsten mithilfe des gaußschen Algorithmus.

  • Beispiel 1: Man bestimme den Rang der Matrix M mit
    M=(124513791331313146222321245125594)

Im Folgenden sind die nach dem gaußschen Algorithmus (möglicherweise) vorzunehmenden Umformungen skizziert.

Ausgangssystem:
12451(I)379133(II)13131(III)4622232(IV)12451(V)25594(VI)

Umformung 1:
12451013203(I)+(II)=(II')01320(I)+(III)=(III')0262324(I)+(IV)=(IV')00000(V)+(V)=(V')013122(I)+(VI)=(VI')

Umformung 2:
124510132000000(II')+(III')=(III'')000122(II')+(IV')=(IV'')0000000012(II')+(VI')=(VI'')

Umformung 3:
124510132000000000120000000000(IV'')+(VI'')=(VI''')

Die drei Zeilen (I),(II')und(IV'') lassen sich nicht mehr durch elementare Umformungen zu Nullvektoren machen, damit ist r=RgM=3.

(2) Ermitteln der höchsten Ordnung der nicht verschwindenden Unterdeterminanten von M

Zur Matrix M wird die Determinante untersucht. Der Rang der Matrix ist dann gleich der höchsten Ordnung der nicht verschwindenden Unterdeterminanten.

  • Beispiel 2: Man bestimme den Rang der Matrix M mit
    M=(24310121420113147445)

Praktischerweise werden zuerst Unterdeterminanten 2.Ordnung betrachtet, z.B.:
D21=|2412|=0;D22=|4321|=20

Damit ist r=RgM2. Die nicht verschwindende Unterdeterminante D22 wird um eine Zeile und eine Spalte zur Unterdeterminante 3. Ordnung erweitert:
D31=|243121011|=10

Damit ist r=RgM3. Um entscheiden zu können, ob r=RgM=3 oder r=RgM=4 ist, müssen nun Unterdeterminanten der Ordnung 4 berechnet werden. Es genügt, die Berechnung bis zur ersten nicht verschwindenden Unterdeterminante der Ordnung 4 fortzusetzen. Insgesamt existieren
(54)=5
Unterdeterminanten der Ordnung 4.
Hier ergibt sich:
D42=|4310214211317445|=462

Damit gilt: Der Rang der Matrix M ist r=RgM=4.

Anmerkung: Hat man die Möglichkeit, Determinanten automatisch (z.B. mithilfe eines Tabellenkalkulationsprogramms) zu berechnen, empfiehlt es sich, mit der Berechnung der Unterdeterminanten der größtmöglichen Ordnung zu beginnen. In diesem Beispiel hätte nach der Berechnung von maximal fünf Unterdeterminanten der Ordnung 4 das Ergebnis r=RgM=4 vorgelegen.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lernhelfer-App für dein Smartphone oder Tablet

Learnattack

Gemeinsam zu besseren Noten!Kooperation mit Duden Learnattack

Lernvideos, interaktive Übungen und WhatsApp-Nachhilfe – jetzt Duden Learnattack 48 Stunden kostenlos testen.

Du wirst automatisch zu Learnattack weitergeleitet.
Lexikon Share
Beliebte Artikel
alle anzeigen

Einloggen