Dezimalbrüche, Multiplikation

Sollen Dezimalbrüche multipliziert werden, lässt man das Komma zunächst unberücksichtigt und multipliziert die so entstehenden natürlichen Zahlen. Danach ist zu entscheiden, an welche Stelle des Resultates das Komma zu setzen ist.

Dabei gilt:
Hat der erste Faktor n Stellen nach dem Komma und der zweite Faktor m Stellen nach dem Komma, so hat das Produkt m + n Stellen nach dem Komma. Gegebenenfalls müssen Nullen ergänzt werden.
 

0,3 · 0,5 = 0,153 · 5 = 15n = 1; m = 1, das Resutat hat zwei Stellen nach dem Komma.
0,2 · 0,4 = 0,082 · 4 = 8n = 1; m = 1, das Resutat hat zwei Stellen nach dem Komma.
1,2 · 0,03 = 0,03612 · 3 = 36n = 1; m = 2, das Resutat hat drei Stellen nach dem Komma.
0,014 · 0,002 = 0,00002814 · 2 = 28n = 3; m = 3, das Resutat hat sechs Stellen nach dem Komma.

Damit können auch die Verfahren der schriftlichen Multiplikation ganzer Zahlen auf die Multiplikation von Dezimalbrüchen angewandt werden.

0,563 · 0,218Man multipliziert 563 218 ¯ 1126 563 4184 ¯ 122414

Bestimmen des Kommas:
n = 3; m = 3, das Resultat hat sechs Stellen nach dem Komma, also:
          0,563 · 0,218 = 0,122734

Im Berechnungsbeispiel können Multiplikationen beliebiger Dezimalzahlen ausgeführt werden.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Learnattack

Gemeinsam zu besseren Noten!Kooperation mit Duden Learnattack

Lernvideos, interaktive Übungen und WhatsApp-Nachhilfe – jetzt Duden Learnattack 48 Stunden kostenlos testen.

Du wirst automatisch zu Learnattack weitergeleitet.
Lexikon Share
Beliebte Artikel
alle anzeigen

Einloggen