Faires Spiel

Mithilfe des Erwartungswertes der Zufallsgröße Gewinn lassen sich Spiele beurteilen.

Im einfachsten Fall des Partnerspiels erwarten wir, dass im Mittel genauso viele Male gewonnen wie verloren wird, das Spiel also fair ist. Was hierbei der eine Spieler gewinnt, erhält er vom anderen (verliert der andere). Bezeichnen wir also den des ersten Spielers mit G, so ist G Gewinn des anderen, wobei Gewinn dann der Erwartungswert von G gleich E ( G ) ist. Für ein faires Spiel muss demzufolge gelten, dass E ( G ) = E ( G ) ist, was nur für E ( G ) = 0 möglich ist.

Wir nennen ein (Partner-)Spiel fair, wenn für den (Rein-)Gewinn eines Spielers gilt:

E ( G ) = 0

Obige Bedingung bedeutet natürlich nicht, dass man bei fairen Spielen nicht gewinnen oder verloren kann; mit ihrer Hilfe kann man jedoch den fairen Einsatz bestimmen.
Wird mit einem Einsatz von e gespielt, so muss für den Erwartungswert des (Brutto-)Gewinnes G B gelten:

E ( G B ) = e

Bei vielen Glücksspielen (Tombolas, Lotterien) tritt an die Stelle des zweiten Spielers die Bank. Für diese Spiele ist im Allgemeinen E ( G B ) < e , d. h., es handelt sich um unfaire Spiele (Beispielsweise werden beim Lotto „6 aus 49“ grundsätzlich nur 50% der eingesetzten Beträge ausgezahlt, der Rest wird für allgemeinnützige Zwecke verwendet bzw. dient der Begleichung entstehender Unkosten).

Lexikon Share
Mathe Note verbessern?
 

Kostenlos bei Duden Learnattack registrieren und ALLES 48 Stunden testen.

Kein Vertrag. Keine Kosten.

  • 40.000 Lern-Inhalte in Mathe, Deutsch und 7 weiteren Fächern
  • Hausaufgabenhilfe per WhatsApp
  • Original Klassenarbeiten mit Lösungen
  • Deine eigene Lern-Statistik
  • Kostenfreie Basismitgliedschaft
Beliebte Artikel
alle anzeigen

Einloggen