Kaprekarzahlen

Mithilfe der Subtraktion kann man eine interessante Eigenschaft dreistelliger Zahlen entdecken.
Man ordne die Ziffern einer dreistelligen Zahl (bei der nicht alle Ziffern gleich sind) einmal so, dass die größtmögliche Zahl entsteht, und dann so, dass die kleinstmögliche Zahl entsteht. Dann bildet man die Differenz und wendet das Verfahren auf das Resultat erneut an. Nach endlich vielen Schritten erhält man – unabhängig von der Ausgangszahl – stets 495.
Diese Zahl heißt Kaprekarzahl, nach dem indischen Mathematiker D. R. KAPREKAR, der diese Eigenschaft 1949 fand.
Die Kaprekarzahl für vierstellige Zahlen lautet 6174.

Ausgangszahl: 734

Ausgangszahl: 4783

743 – 347 = 3968743 – 3478 = 5265
963 – 369 = 5946552 – 2556 = 3996
954 – 459 = 4959963 – 3699 = 6264
 6642 – 2466 = 4176
 7641 – 1467 = 6174


Für zwei-, fünf- und sechsstellige Zahlen gibt es keine Kaprekarzahl, das geschilderte Verfahren endet in einem Zyklus mehrerer Zahlen.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Mathe Note verbessern?
 

Kostenlos bei Duden Learnattack registrieren und ALLES 48 Stunden testen.

Kein Vertrag. Keine Kosten.

  • 40.000 Lern-Inhalte in Mathe, Deutsch und 7 weiteren Fächern
  • Hausaufgabenhilfe per WhatsApp
  • Original Klassenarbeiten mit Lösungen
  • Deine eigene Lern-Statistik
  • Kostenfreie Basismitgliedschaft
Beliebte Artikel
alle anzeigen

Einloggen