Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 7 Planimetrie
  4. 7.6 Dreiecke
  5. 7.6.9 Anwendung der trigonometrischen Funktionen
  6. Kosinussatz

Kosinussatz

Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie. Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.
Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Der Kosinussatz gehört neben dem Sinussatz zu den wichtigsten Sätzen der Trigonometrie. Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.
Man kann auch aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel.

Kosinussatz

In jedem Dreieck ist das Quadrat über einer Seite gleich der Summe der Quadrate über den beiden anderen Seiten vermindert um das doppelte Produkt aus diesen Seiten und dem Kosinus des von ihnen eingeschlossenen Winkels:

           a 2 = b 2 + c 2 − 2   b c ⋅ cos α b 2 = a 2 + c 2 − 2   a c ⋅ cos β c 2 = a 2 + b 2 − 2   a b ⋅ cos γ

  • Kosinussatz am spitzwinkligen Dreieck

Mithilfe des Satzes von Pythagoras lässt sich der Kosinussatz herleiten (Bild 2):

h b = a ⋅ sin γ und d = b − a ⋅ cos γ

c 2 = h b 2 + d 2 c 2 = a 2 ⋅ sin 2 γ + b 2 − 2   b a ⋅ cos γ + a 2 cos 2 γ c 2 = a 2 ( sin 2 γ + cos 2 γ ) + b 2 − 2   a b ⋅ cos γ c 2 = a 2 + b 2 − 2   a b ⋅ cos γ

Der Satz des Pythagoras ist ein Spezialfall des Kosinussatzes, denn für γ = 90 ° und somit cos 90° = 0 ergibt sich:
c 2 = a 2 + b 2

  • Herleitung Kosinussatz
Lernhelfer (Duden Learnattack GmbH): "Kosinussatz." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/kosinussatz (Abgerufen: 30. June 2025, 19:43 UTC)

Suche nach passenden Schlagwörtern

  • Trigonometrie
  • Dreieck
  • interaktiv
  • Winkel
  • Mathcad
  • Rechenbeispiel
  • Satz des Pythagoras
  • Berechnungsbeispiel
  • Kosinussatz
  • Seite
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Kongruenz von Figuren

Zwei Figuren F   1 und F   2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
In zueinander kongruenten Figuren sind alle einander entsprechenden Strecken und Winkel gleich groß.
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Sinussatz

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden.

Sätze über Dreiecke

Zwischen den Winkeln und Seiten in einem Dreieck gelten zahlreiche Zusammenhänge.
So besteht zwischen den Winkeln eines Dreiecks folgende Beziehung:
Die Summe der Innenwinkel eines Dreiecks beträgt 180° (Innenwinkelsummensatz).

Für die Seiten eines Dreiecks gilt folgende Beziehung:
Die Summe der Längen zweier Seiten ist stets größer als die Länge der dritten Seite (Dreiecksungleichung).

Zwischen den Seiten und Winkeln in einem Dreieck gilt folgende Beziehung:
Der längeren von zwei Seiten liegt stets der größere der entsprechenden Innenwinkel gegenüber.

Kongruenz von Dreiecken

Zwei Dreiecke sind zueinander kongruent, wenn es eine Bewegung gibt, die ein Dreieck auf das andere abbildet. Die beiden Dreiecke stimmen dann in allen sechs Bestimmungsstücken oder Maßen überein. Die Konstruktion eines Dreiecks ist möglich, wenn drei voneinander unabhängige Bestimmungsstücke gegeben sind. Daher wird auch bei der Betrachtung der Kongruenz von Dreiecken von drei Seiten oder Winkeln ausgegangen.

Polygone

Polygone (Vielecke) sind abgeschlossene ebene Streckenzüge (Polygonzüge) aus endlich vielen Strecken. Ein Polygon ist eine ebene Figur, die durch Strecken begrenzt wird, wie Dreieck, Viereck, Fünfeck, Sechseck usw.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025