Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 5 Gleichungen und Ungleichungen
  4. 5.3 Äquivalentes Umformen von Gleichungen und Ungleichungen
  5. 5.3.3 Äquivalentes Umformen von Ungleichungen
  6. Ungleichungen, Äquivalentes Umformen

Ungleichungen, Äquivalentes Umformen

Zwei Terme, zwischen denen eines der Zeichen <, >, ≤ , ≥ oder ≠ steht, bilden eine Ungleichung.

Äquivalenzumformungen von Ungleichungen

  • Das Addieren und das Subtrahieren derselben rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Addieren und das Subtrahieren desselben Terms auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer positiven rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer negativen rationalen Zahl auf beiden Seiten der Ungleichung mit gleichzeitigem Umdrehen des Relationszeichens
    (Aus < wird >, aus ≤ wird ≥ und umgekehrt.)

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Zwei Terme, zwischen denen eines der Zeichen <, >, ≤ , ≥ , oder ≠ steht, bilden eine Ungleichung.

Das Zeichen ≤ ist zusammengesetzt aus „<“ und „=“. Es bedeutet „ist kleiner oder gleich“.
Das Zeichen ≥ ist zusammengesetzt aus „>“ und „=“.
Es bedeutet „ist größer oder gleich“.

Beispiel:
8 ≤ 15 bedeutet 8 < 15 oder 8 = 15.
8 < 15 ist eine wahre Aussage. 8 = 15 ist eine falsche Aussage.
Die erste der beiden Teilaussagen ist wahr. Deshalb ist 8 ≤ 15 eine wahre Aussage.

Darstellung der Lösungsmenge einer Ungleichung

Beispiel:
Gesucht ist die Lösungsmenge der Ungleichung x + 9 < 15 für x ∈ ℕ .

  • Die Lösungsmenge kann in Worten beschrieben werden:
    Die Lösungsmenge der Ungleichung besteht aus allen natürlichen
    Zahlen, die kleiner sind als 6.
     
  • Die Lösungsmenge kann in der Mengenschreibweise dargestellt werden:
    L = { 0 ;     1 ;     2 ;     3 ;     4 ;     5 }
     
  • Die Lösungsmenge kann auf der Zahlengeraden veranschaulicht werden:

Äquivalenzumformungen von Ungleichungen

  • Das Addieren und das Subtrahieren derselben rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Addieren und das Subtrahieren desselben Terms auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer positiven rationalen Zahl auf beiden Seiten der Ungleichung
  • Das Multiplizieren und das Dividieren mit einer negativen rationalen Zahl auf beiden Seiten der Ungleichung mit gleichzeitigem Umdrehen des Relationszeichens
    (Aus < wird >, aus ≤ wird ≥ und umgekehrt.)


4   ( x + 5 ) + 4 x ≤ 4   ( 4 x − 1 ) + 18 4 x + 20 + 4 x ≤ 16 x − 4 + 18               8 x + 20 ≤ 16 x + 14                               | − 16 x         − 8 x + 20 ≤ 14                                                             | − 20                       − 8 x ≤ − 6                                                           | : ( − 8 )                               x ≥ 3 4                          

Lernhelfer (Duden Learnattack GmbH): "Ungleichungen, Äquivalentes Umformen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/ungleichungen-aequivalentes-umformen (Abgerufen: 21. July 2025, 23:08 UTC)

Suche nach passenden Schlagwörtern

  • äquivalente Ungleichungen
  • äquivalent
  • äquivalent zueinander
  • Äquivalenz
  • Ungleichung
  • Mengenschreibweise
  • Zahlengerade
  • Aussage
  • Lösungsmenge
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Lineare Gleichungssysteme, Grafisches Lösen

Ein lineares Gleichungssystem mit den beiden Variablen x und y besteht aus zwei linearen Gleichungen (I und II) mit jeweils den Variablen x und y.
I     a 1 x + b 1 y = c 1     a 1 ,b 1 ,c 1 ∈ ℚ II       a 2 x + b 2 y = c 2       a 2 ,b 2 ,c 2 ∈ ℚ
Zur Lösungsmenge eines linearen Gleichungssystems gehören die Zahlenpaare, die sowohl zur Lösungsmenge der Gleichung I als auch zur Lösungsmenge der Gleichung II gehören.

Lineare Ungleichungen, mit einer Variablen

Zwei Terme, zwischen denen eines der Zeichen > ,    < ,    ≤ ,    ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form ax + b < 0 ( a ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit einer Variablen.

Lineare Ungleichungen, mit zwei Variablen

Zwei Terme, zwischen denen eines der Zeichen < ,     > ,     ≤ ,     ≥  oder  ≠ steht, bilden eine Ungleichung.
Ungleichungen der Form a x + b y + c < 0       ( a ,   b ≠ 0 ) oder solche, die durch äquivalentes Umformen in diese Form überführt werden können, heißen lineare Ungleichungen mit zwei Variablen.

Proben

Unter einer Probe versteht man die Überprüfung des erhaltenen Ergebnisses u. a. durch

  • das Einsetzen der Lösungen in die Ausgangsgleichung,
  • das Prüfen der Lösungen am Aufgabentext,
  • das Ausführen der Umkehroperationen,
  • das Nutzen von Rechenregeln (z. B. Teilbarkeitsregeln) oder
  • das grafische Lösen einer numerischen Aufgabe.

Verhältnisgleichungen

Viele Probleme, bei denen mit drei gegebenen Größen eine vierte berechnet wird, führen auf Verhältnisgleichungen (Proportionen).
Eine Gleichung der Form
a b = c d     (   a ,b ,c ,d ≠ 0   )
heißt Verhältnisgleichung oder Proportion.
Dabei wird der Quotient zweier Größen als Verhältnis bezeichnet. Verhältnisgleichungen haben eine große Bedeutung bei der Prozentrechnung, bei den Strahlensätzen und bei linearen Funktionen der Form y = mx.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025