Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.3 Mehrstufige Zufallsversuche
  6. Vierfeldertafel

Vierfeldertafel

Eine Vierfeldertafel ist ein Hilfsmittel, um die gleichzeitige Beobachtung zweier Ereignisse E und F zu erfassen. Auf ihrer Grundlage ist es möglich zu entscheiden, ob die betrachteten Ereignisse voneinander abhängig oder unabhängig sind.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Eine Vierfeldertafel ist ein Hilfsmittel, um die gleichzeitige Beobachtung zweier Ereignisse zu erfassen. Auf ihrer Grundlage ist es möglich zu entscheiden, ob die betrachteten Ereignisse voneinander abhängig oder unabhängig sind.

Für einen Vorgang, der n-mal wiederholt wird, bzw. für n Beobachtungsergebnisse sollen die Ereignisse (Merkmale) E und F betrachtet werden. Für diesen Fall hat eine Vierfeldertafel die folgende Gestalt:

F F ¯ ∑
E H n ( E ∩ F )                       H n ( E ∩ F ¯ ) H n ( E )
E ¯ H n ( E ¯ ∩ F )                      H n ( E ¯ ∩ F ¯ ) H n ( E ¯ )
∑ H n ( F ) H n ( F ¯ ) n

Hierbei sind H n jeweils die absoluten Häufigkeiten, die E ¯ und F ¯ Gegenereignisse von E bzw. F, und die Schreibweise E ∩ F bedeutet, dass beide Merkmale zutreffen.

Die Summe der absoluten Häufigkeiten im Inneren der Vierfeldertafel muss stets n ergeben, während an den Rändern jeweils die absoluten Häufigkeiten von E, F, F ¯ und E ¯ stehen.

Beispiel:
Es werden 1200 Fahrgäste einer Nahverkehrslinie befragt, wobei eine Auswertung nach folgenden Merkmalen vorgenommen wird: Geschlecht (männlich/weiblich); Zeitkarteninhaber (ja/nein).

  Zeitkarte Summe
      ja                                   nein    
männlich     215                               472 687
weiblich     293                               220 513
Summe     508                               692 1200

Anstelle der absoluten Häufigkeiten können in der Vierfeldertafel auch die relativen Häufigkeiten (bzw. Wahrscheinlichkeiten) notiert werden. In diesem Fall beträgt die Summe im Inneren 1, und an den Rändern sind jeweils die relativen Häufigkeiten (bzw. Wahrscheinlichkeiten) von E, F, E ¯ und F ¯ notiert.

Für das obige Beispiel hätte eine Vierfeldertafel unter Verwendung der relativen Häufigkeiten folgendes Aussehen:

  Zeitkarte Summe
      ja                               nein  
männlich     0,18                          0,40 0,58
weiblich     0,24                          0,18 0,42
Summe     0,42                          0,58 1
Lernhelfer (Duden Learnattack GmbH): "Vierfeldertafel." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/vierfeldertafel (Abgerufen: 28. January 2026, 05:34 UTC)

Suche nach passenden Schlagwörtern

  • Häufigkeit
  • relative Häufigkeit
  • unabhängiges Ereignis
  • Ereignis
  • abhängiges Ereignis
  • abolute Häufigkeit
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Pfadregeln

Die Pfadregeln gestatten, (anhand des entsprechenden Baumdiagramms) die Wahrscheinlichkeit von Ergebnissen bzw. Ereignissen bei mehrstufigen Zufallsversuchen zu berechnen.

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Faires Spiel

Mithilfe des Erwartungswertes der Zufallsgröße Gewinn lassen sich Spiele beurteilen.
Ein Spiel heißt fair, wenn der Erwartungswert des (Brutto-)Gewinns gleich dem Einsatz e ist, d. h., wenn
  E ( G B ) = e
gilt.

Stabilwerden relativer Häufigkeiten

Werden Vorgänge mit zufälligem Ergebnis unter gleichen Bedingungen sehr oft wiederholt und wird dabei ein bestimmtes Ereignis E betrachtet, so stellt man fest, dass die relative Häufigkeit h   n   ( E ) für das Eintreten dieses Ereignisses immer weniger um einen festen Wert schwankt. Dies wird als Stabilwerden der relativen Häufigkeit bezeichnet und ist eine Erfahrungstatsache, die auch als empirisches Gesetz der großen Zahlen bekannt ist. Jener stabile Wert der relativen Häufigkeit kann als Maß (Schätzwert) für die Wahrscheinlichkeit des Eintretens von E gewählt werden.

Urnenmodell

Viele Probleme der klassischen Wahrscheinlichkeitsrechnung lassen sich mithilfe des Urnenmodells veranschaulichen (simulieren). Dazu wird angenommen, dass sich in einem Gefäß (der Urne) eine bestimmte Anzahl (unterscheidbarer) Kugeln befinden und dass aus diesem Gefäß eine entsprechende Anzahl von Kugeln nacheinander bzw. auf einen Griff gezogen werden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026