Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.3 Mehrstufige Zufallsversuche
  6. Pfadregeln

Pfadregeln

Die Pfadregeln gestatten, (anhand des entsprechenden Baumdiagramms) die Wahrscheinlichkeit von Ergebnissen bzw. Ereignissen bei mehrstufigen Zufallsversuchen zu berechnen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Mithilfe der Pfadregeln lassen sich die Wahrscheinlichkeiten mehrstufiger Zufallsversuche (Zufallsexperimente) berechnen. Als Hilfsmittel nutzt man hierbei Baumdiagramme, in denen die einzelnen Wegstücke mit den Wahrscheinlichkeiten der Ergebnisse des entsprechenden Teilvorgangs beschriftet sind.

Beispiel:
In einer Urne befinden sich fünf blaue und zwei weiße Kugeln. Es werden (ohne Zurücklegen) nacheinander drei Kugeln gezogen.
a) Es ist die Wahrscheinlichkeit dafür zu ermitteln, dass drei blaue Kugeln gezogen werden.
b) Wie groß ist die Wahrscheinlichkeit, dass sich unter den gezogenen Kugeln genau eine weiße befindet?

Das folgende Bild zeigt das Baumdiagramm für diesen dreistufigen Zufallsversuch mit den entsprechenden Wahrscheinlichkeiten.

Bild

Wir betrachten zunächst die Wahrscheinlichkeit für ein mögliches Ergebnis des Zufallsversuchs.

Baumdiagramm für einen dreistufigen Zufallsversuch

 

1. Pfadregel (Produktregel):
Die Wahrscheinlichkeit eines Ergebnisses in einem mehrstufigen Vorgang ist gleich dem Produkt der Wahrscheinlichkeiten längs des Pfades, der diesem Ergebnis entspricht.

 

Diese Regel gestattet uns die Lösung der Teilaufgabe a). Es ist (grüner Pfad):
  P ( { b b b } ) = 5 7 ⋅ 4 6 ⋅ 3 5 = 2 7
Auch die Wahrscheinlichkeit, drei weiße Kugeln zu ziehen, ließe sich mithilfe des Baumdiagramms berechnen:
  P ( { w w w } ) = 2 7 ⋅ 1 6 ⋅ 0 = 0
(Das zu diesem Pfad in Bild 1 gestrichelte Teilstück mit der Wahrscheinlichkeit 0 wird beim Zeichnen des Baumdiagramms im Allgemeinen weggelassen.)

Für die Berechnung der Wahrscheinlichkeit eines Ereignisses sind alle für dieses Ereignis günstigen Pfade (im Baumdiagramm rot markiert) zu berücksichtigen.

 

2. Pfadregel (Summenregel):
Die Wahrscheinlichkeit eines Ereignisses in einem mehrstufigen Vorgang ist gleich der Summe der Wahrscheinlichkeiten der für dieses Ereignis günstigen Pfade.

 

Somit gilt für die Wahrscheinlichkeit, genau eine weiße Kugel (d. h. eine weiße Kugel und zwei blaue Kugeln) zu ziehen:
  P ( { b b w } ,   { b w b } ,   { w b b } ) = 5 7 ⋅ 4 6 ⋅ 2 5 + 5 7 ⋅ 2 6 ⋅ 4 5 + 2 7 ⋅ 5 6 ⋅ 4 5 = 4 7

 

Lernhelfer (Duden Learnattack GmbH): "Pfadregeln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/pfadregeln (Abgerufen: 19. May 2025, 16:47 UTC)

Suche nach passenden Schlagwörtern

  • Padregeln
  • Produktregel
  • Baumdiagramm
  • Wahrscheinlichkeit
  • Summenregel
  • Pfad
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Pierre Laplace

PIERRE SIMON DE LAPLACE (1749 bis 1827), französischer Mathematiker und Astronom
* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der höheren Analysis, der Wahrscheinlichkeitsrechnung sowie der Himmelsmechanik. So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Faires Spiel

Mithilfe des Erwartungswertes der Zufallsgröße Gewinn lassen sich Spiele beurteilen.
Ein Spiel heißt fair, wenn der Erwartungswert des (Brutto-)Gewinns gleich dem Einsatz e ist, d. h., wenn
  E ( G B ) = e
gilt.

Stabilwerden relativer Häufigkeiten

Werden Vorgänge mit zufälligem Ergebnis unter gleichen Bedingungen sehr oft wiederholt und wird dabei ein bestimmtes Ereignis E betrachtet, so stellt man fest, dass die relative Häufigkeit h   n   ( E ) für das Eintreten dieses Ereignisses immer weniger um einen festen Wert schwankt. Dies wird als Stabilwerden der relativen Häufigkeit bezeichnet und ist eine Erfahrungstatsache, die auch als empirisches Gesetz der großen Zahlen bekannt ist. Jener stabile Wert der relativen Häufigkeit kann als Maß (Schätzwert) für die Wahrscheinlichkeit des Eintretens von E gewählt werden.

Urnenmodell

Viele Probleme der klassischen Wahrscheinlichkeitsrechnung lassen sich mithilfe des Urnenmodells veranschaulichen (simulieren). Dazu wird angenommen, dass sich in einem Gefäß (der Urne) eine bestimmte Anzahl (unterscheidbarer) Kugeln befinden und dass aus diesem Gefäß eine entsprechende Anzahl von Kugeln nacheinander bzw. auf einen Griff gezogen werden.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025