Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Regeln für das Berechnen bestimmter Integrale

Für das Berechnen bestimmter Integrale von im Intervall [a; b] stetigen Funktionen f und g können folgende Regeln Anwendung finden:

  • Regel zur Übereinstimmung bzw. Vertauschung von Integrationsgrenzen;
  • Regel der Intervalladditivität;
  • Faktorregel;
  • Summenregel
Artikel lesen

Baumdiagramme und Pfadregeln

Mithilfe eines Baumdiagramms lässt sich der mögliche Ablauf eines mehrstufigen Zufallsexperiments mit endlich vielen möglichen Ergebnissen in seiner komplexen Struktur erfassen, darstellen und analysieren. Zudem ist es damit möglich, auf Grundlage der ersten und zweiten Pfadregel die Wahrscheinlichkeiten für atomare und zusammengesetzte Ereignisse eines solchen Experiments in einfacher Weise zu berechnen.

Artikel lesen

Pfadregeln

Die Pfadregeln gestatten, (anhand des entsprechenden Baumdiagramms) die Wahrscheinlichkeit von Ergebnissen bzw. Ereignissen bei mehrstufigen Zufallsversuchen zu berechnen.

Artikel lesen

Partielle Integration

Im Unterschied zur Integration einer Summe von Funktionen, für die es eine einfache Integrationsregel (Summenregel) gibt, gestaltet sich das Integrieren eines Produktes von Funktionen weitaus schwieriger.
In einigen Fälle führt die Integration durch Substitution zum Ziel, doch in vielen Fällen kann man keine geeignete Substitution angeben.
Eine einfache Umkehrung der Differenziationregel für Produkte von Funktionen ist nicht möglich, jedoch bietet diese Regel den Zugang zu einem speziellen Integrationsverfahren, das auf der Produktregel der Differenzialrechnung fußt.
Es gilt die folgende Regel der partiellen Integration.

Artikel lesen

Integrationsregeln

Für das Aufsuchen von Stammfunktionen (Ermitteln unbestimmter Integrale) helfen die Kenntnisse aus der Differenzialrechnung (Bilden von Ableitungsfunktionen). Diese reichen aber oftmals nicht aus – es bedarf der Verwendung spezieller Integrationsregeln.

Von grundlegender Bedeutung sind die Potenzregel, die Faktor- und die Summenregel. Für das Ermitteln komplizierterer unbestimmter Integrale stehen weitere Integrationsverfahren wie z.B. die Integration durch lineare und nichtlineare Substitution, das Verfahren der partiellen Integration oder der Integration durch Partialbruchzerlegung zur Verfügung.

Formelsammlungen enthalten überdies oftmals Tafeln mit Integralen schwierig zu berechnender Funktionen. Eine große Hilfe bieten schließlich moderne Rechengeräte mit Computeralgebrasystemen (CAS).

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025