Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.4 Energie, mechanische Arbeit und Leistung
  5. 2.4.2 Die mechanische Arbeit
  6. Energie und Arbeit

Energie und Arbeit

Die physikalischen Größen Energie und Arbeit hängen eng miteinander zusammen. Wird von einem System oder an einem System Arbeit verrichtet, so ändert sich dessen Energie. Allgemein gilt:

Die von einem System oder an einem System verrichtete Arbeit ist gleich der Änderung seiner Energie.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Ein Kran oder ein Hubschrauber hebt einen Behälter in eine bestimmte Höhe. Dabei wird Hubarbeit verrichtet. Die potenzielle Energie des Behälters vergrößert sich.

Beim Anfahren und Beschleunigen eines Pkw wird an ihm Arbeit verrichtet, die man als Beschleunigungsarbeit bezeichnet. Die an dem Pkw verrichtete Beschleunigungsarbeit erhöht dessen kinetische Energie.

In einem Fitness-Center kann man mit speziellen Geräten die Armmuskulatur kräftigen. Dabei werden Federn gedehnt oder Massestücke angehoben. Bei Federn wird Federspannarbeit verrichtet, bei Massestücken Hubarbeit. Dabei ändert sich deren Energie. Allgemein gilt:

Die von einem System oder an einem System verrichtete Arbeit ist gleich der Änderung seiner Energie.

W = Δ E

Für die oben genannten speziellen Fälle lassen sich die Zusammenhänge auch folgendermaßen formulieren:

Art der ArbeitÄnderung der Energiemathematischer Zusammenhang
Hubarbeit

 
führt zur Änderung der
potenziellen Energie
W H = F G ⋅ h = Δ E p o t W H = m ⋅ g ⋅ h = Δ E p o t
Beschleunigungs-arbeitführt zur Änderung
der kinetischen
Energie
W B = F ⋅ s = Δ E k i n W B = m ⋅ a ⋅ s = Δ E k i n

Federspannarbeit

 

führt zur Veränderung
der potenziellen
Energie
W F = 1 2 F E ⋅ s = Δ E p o t W F = 1 2 D ⋅ s 2 = Δ E p o t

Dabei wird vorausgesetzt, dass keine Energie in andere Energieformen umgewandelt wird. Bei allen Geräten, Fahrzeugen, Maschinen und Anlagen tritt jedoch Reibung auf. Reibungskräfte wirken stets so, dass sie die Bewegung hemmen. Dabei wird Reibungsarbeit verrichtet. Es entsteht thermische Energie, die in Form von Wärme an die Umgebung abgegeben wird. Berücksichtigt man das, so kann man allgemeiner formulieren:

Die an einem System oder von einem System verrichtete Arbeit ist gleich der dem Körper oder der Umgebung zugeführten Energie.

Wie groß der Anteil der Energie ist, der an die Umgebung in Form von Wärme abgegeben wird, hängt vom jeweiligen Sachverhalt ab.

Weitere Gemeinsamkeiten und Unterschiede
Arbeit und Energie haben die gleichen Einheiten. Sie werden in Newtonmeter (Kurzzeichen: Nm) oder in Joule (Kurzzeichen: J) gemessen. Es gilt:

1 J = 1 Nm

Manchmal nutzt man auch zur Unterscheidung der beiden Größen die Einheit Joule nur für die Energie und die Einheit Nm nur für die Arbeit. Der wichtigste Unterschied zwischen den beiden Größen besteht in ihrem Charakter. Die Arbeit kennzeichnet immer einen Vorgang oder Prozess. Sie ist eine Prozessgröße.
Die Energie dagegen charakterisiert den Zustand eines Systems. Sie ist eine Zustandsgröße und darüber hinaus eine Erhaltungsgröße, da sich ihr Betrag in einem abgeschlossenen System nicht ändert.

Lernhelfer (Duden Learnattack GmbH): "Energie und Arbeit." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/energie-und-arbeit (Abgerufen: 20. May 2025, 09:21 UTC)

Suche nach passenden Schlagwörtern

  • Prozessgröße
  • potenzielle Energie
  • Arbeit
  • thermische Energie
  • Hubarbeit
  • Federspannarbeit
  • kinetische Energie
  • Zustandsgröße
  • Erhaltungsgröße
  • Energie
  • abgeschlossenes System
  • Beschleunigungsarbeit
  • Reibungsarbeit
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Selbstorganisation

In der Natur kann man die Ausbildung vielfältiger Strukturen (Kristalle, Zellen, Wirbel, Wolkenformen) beobachten. Dabei bilden sich unter bestimmten Bedingungen aus zunächst unstrukturierten oder wenig strukturierten Zuständen Strukturen heraus. Da diese Vorgänge von selbst ablaufen, wenn die erforderlichen Bedingungen vorliegen, spricht man von Selbstorganisation. Die Theorie der Selbstorganisation, die ab etwa 1970 entwickelt wurde, bezeichnet man auch als Synergetik. Gegenstand der Synergetik ist die Erforschung der spontanen Bildung von Strukturen. Selbstorganisation bedeutet eine Erhöhung der Ordnung im System, die mit einer Entropieminderung verbunden ist.

Lenzsches Gesetz

HEINRICH FRIEDRICH EMIL LENZ (1804-1865) entdeckte 1833 bei seinen Untersuchungen zum elektrischen Strom und zu der von MICHAEL FARADAY (1791-1867) erforschten elektromagnetischen Induktion, dass die Richtung des Induktionsstromes nicht zufällig ist. Sie steht vielmehr in ursächlichem Zusammenhang mit der jeweiligen Ursache für das Entstehen einer Induktionsspannung. Es gilt:

Der Induktionsstrom ist stets so gerichtet, dass er der Ursache seiner Entstehung entgegenwirkt.

Dieses Gesetz, das nichts anderes ist als der Energieerhaltungssatz für die elektromagnetische Induktion ist, wird nach seinem Entdecker als lenzsches Gesetz oder lenzsche Regel bezeichnet.

Die Wärme

Die Wärme ist eine relativ komplizierte physikalische Größe, deren Wesen erst im Laufe vieler Jahrzehnte geklärt werden konnte. Heute kann man klar definieren: Die Wärme gibt an, wie viel thermische Energie von einem Körper auf einen anderen Körper übertragen wird.

 Formelzeichen:Q
 Einheit:ein Joule (1 J)

Die Wärme ist wie die mechanische Arbeit eine Prozessgröße, da sie den Prozess der Energieübertragung zwischen Körpern beschreibt.

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist der Energieerhaltungssatz, formuliert für thermodynamische Prozesse. Die heute bekannte mathematische Formulierung des 1. Hauptsatzes der Thermodynamik stammt von RUDOLF CLAUSIUS und wurde von ihm um 1850 so formuliert:

Die einem thermodynamischen System zugeführte Wärme ist gleich der Summe aus der Änderung der inneren Energie des Systems und der von ihm verrichteten mechanischen Arbeit.

Δ U = W + Q Δ U Änderung der inneren Energie des Systems W vom System oder am System verrrichtet mechanische Arbeit (Volumenarbeit) Q vom System aufgenommene oder abgegebene Wärme

Eine andere übliche Formulierung des 1. Hauptsatzes der Thermodynamik lautet:
Es ist unmöglich, eine Perpetuum mobile 1. Art zu konstruieren.

Perpetuum mobile

Ein Perpetuum mobile ( das sich ständig Bewegende) ist ein uralter Traum der Menschheit. Eine Maschine zu bauen, die ohne Energiezufuhr ständig Arbeit verrichtet, ist zu verlockend. Konstruktionen von Perpetuum mobile sind schon aus dem Mittelalter bekannt. Oftmals wurde versucht durch raffinierte Anordnungen von Ungleichgewichten an Rädern oder durch unsymmetrische endlosen Ketten „immerwährende“ Antriebe zu bauen.
In der Physik wird zwischen einem Perpetuum mobile 1. Art und 2. Art unterschieden.
Mit der Entdeckung des Energieerhaltungssatzes (des 1. Hauptsatzes der Thermodynamik) und des 2. Hauptsatzes der Thermodynamik wurde die wissenschaftlichen Begründung für die Unmöglichkeit eines Perpetuum mobile gegeben.
Obwohl längst wissenschaftlich begründet, gibt es auch heute immer wieder Versuche, die Funktionsfähigkeit eines Perpetuum mobile nachzuweisen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025