Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 8 Spezielle Relativitätstheorie
  4. 8.3 Relativistische Kinematik
  5. 8.3.0 Relativistische Kinematik
  6. Längenkontraktion

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist. Längenkontraktion bedeutet:
In seinem Ruhesystem hat ein Körper seine größte Länge, die Eigenlänge. In einem dazu bewegten System ist die Länge um den Faktor 1 / k = 1 − v 2 / c 2 (Kehrwert des LORENTZ-Faktors) geringer.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist (Bild1).

Als Beispiel betrachten wir dazu eine sehr schnell fliegende Rakete (Bild 2), die in den Punkten A und B zwei synchronisierte Lichtuhren mitführt. Die Rakete betrachten wir als Bezugssystem S'. Der Abstand zwischen A und B betrage l'. Das ist zugleich die Länge eines gegebenen Körpers im System S'. Die Rakete bewegt sich gegenüber einem System S, in dem sich eine Lichtuhr C befindet, mit der Geschwindigkeit v nach rechts.
Gemessen wird die Zeit des Vorbeifluges der Rakete an C von beiden Systemen aus.

Für das Bezugssystem S' ergibt sich:
Die Zeit für den Vorbeiflug beträgt  Δ t ' .  Damit ergibt sich als Abstand bzw . Länge: A B ¯ = l ' = c ⋅ Δ t '

Für das Bezugssystem S ergibt sich aufgrund der Zeitdilatation:
Die Zeit für den Vorbeiflug beträgt die kürzere Zeit  Δ t .   Damit ergibt sich der kleinere Abstand bzw . die kleinere Länge: A B ¯ = l = c ⋅ Δ t

Allgemein gilt:
In seinem Ruhessystem hat ein Körper die größte Länge, die als Eigenlänge bezeichnet wird. In einem dazu bewegten System ist die Länge geringer.

Herleitung aus der Zeitdilatation
Der mathematische Zusammenhang ergibt sich aus der Gleichung für die Zeitdilatation. Sie lautet:
Δ t ' = Δ t 1 − v 2 / c 2
Stellt man die beiden oben genannten Gleichungen für die Längen (Abstände) l und l' nach den jeweiligen Zeiten um und setzt diese Zeiten in die Gleichung für die Zeitdilatation ein, so erhält man:
l ' = l 1 − v 2 / c 2       oder  umgestellt:  l = l ' ⋅ 1 − v 2 / c 2 Mit dem LORENTZ-Faktor  k = 1 1 − v 2 / c 2  kann man auch schreiben: l ' = k ⋅ l    und    l = l ' k

Die Veränderung der Länge mit dem LORENTZ-Faktor k ist grafisch in Bild 3 dargestellt. Bei kleiner Geschwindigkeit ist die Längenkontraktion vernachlässigbar klein. Die Länge des Körpers ist gleich seiner Eigenlänge. Bei der Lichtgeschwindigkeit c wäre die Länge null.

Herleitung aus der LORENTZ-Transformation

In seinem Ruhesystem S' hat der Körper die Länge:
l ' = x 2 ' − x 1 '
Im Bezugssystem S hat der gleiche Körper die Länge
l = x 2 − x 1
Sie wird zu einem bestimmten Zeitpunkt durch die Bestimmung des Endpunktes und des Anfangspunktes des Körpers festgelegt. Es gilt also dann für die Zeiten in S:
t 1 = t 2 oder Δ t = 0
Eine Anwendung der LORENTZ-Transformation ergibt:
x 1 ' = x 1 − v ⋅ t 1 1 − v 2 / c 2 x 2 ' = x 2 − v ⋅ t 2 1 − v 2 / c 2 Damit erhält man als Länge: l ' = x 2 ' − x 1 ' = ( x 2 − v ⋅ t 2 ) − ( x 1 − v ⋅ t 1 ) 1 − v 2 / c 2 Mit t 1 = t 2 bzw . Δ t = 0 ergibt sich: l ' = x 2 − x 1 1 − v 2 / c 2 = l 1 − v 2 / c 2

Lernhelfer (Duden Learnattack GmbH): "Längenkontraktion." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/laengenkontraktion (Abgerufen: 20. May 2025, 12:35 UTC)

Suche nach passenden Schlagwörtern

  • Berechnung
  • Lorentz-Tranformation
  • Zeitdilatation
  • Bezugssystem
  • Eigenlänge
  • Rechenbeispiel
  • klassische Physik
  • spezielle Relativitätstheorie
  • Längenkontraktion
  • Ruhesystem
  • bewegtes System
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Äquivalenz von Masse und Energie

ALBERT EINSTEIN formulierte in seiner berühmten Arbeit zur speziellen Relativitätstheorie im Jahre 1905: „Die Masse eines Körpers ist ein Maß für dessen Energiegehalt“. Er stellte fest, dass Masse und Energie äquivalente Größen sind und zwischen diesen Größen der fundamentale Zusammenhang E = m ⋅ c 2 existiert. Diese Gleichung ist die Grundlage für das Verständnis der Energiefreisetzung durch Kernspaltung und Kernfusion sowie vieler weiterer physikalischer Prozesse.

Albert Einstein

* 14.03.1879 in Ulm
† 18.04.1955 in Princeton (USA)

Er war einer der bedeutendsten Physiker der Geschichte und der Begründer der Relativitätstheorie, die zu einer völligen Veränderung des physikalischen Weltbildes führte. Darüber hinaus erbrachte er grundlegende Arbeiten auf vielen Gebieten der Physik. Insbesondere deutete er den lichtelektrischen Effekt und war damit einer der Mitbegründer der Quantentheorie. Hervorzuheben ist sein Eintreten für Humanität und eine verantwortungsbewusste Nutzung physikalischer Erkenntnisse.

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Grundlegende Prinzipien und Bedeutung der ART

Die spezielle Relativitätstheorie bezieht sich auf Inertialsysteme. Der Einfluss der Gravitation wird ausgeblendet. In Verallgemeinerung seiner speziellen Relativitätstheorie auf beliebige Bezugssysteme unter Einschluss von Gravitationswirkungen entwickelte ALBERT EINSTEIN die allgemeine Relativitätstheorie, die er 1916 veröffentlichte. Sie begründet neue Vorstellungen über Raum und Zeit und ist z.B. die Grundlage aller modernen kosmologischen Theorien.

Grundaussagen der speziellen Relativitätstheorie

Mit der im Jahre 1905 veröffentlichten speziellen Relativitätstheorie, kurz auch als SRT bezeichnet, entwickelte der deutsche Physiker ALBERT EINSTEIN (1879-1955) eine neue Vorstellung von Raum und Zeit, die sich von den bisher allgemein anerkannten Auffassungen der klassischen Physik deutlich unterschied. Dabei ging er von zwei Grundaussagen oder Postulaten aus, die sich inzwischen längst als zutreffend erwiesen haben:

  • Alle Inertialsysteme sind gleichberechtigt (Relativitätsprinzip).
  • Die Vakuumlichtgeschwindigkeit ist überall gleich groß. Sie ist die größtmögliche Geschwindigkeit für die Signalübertragung (Prinzip von der Konstanz der Lichtgeschwindigkeit).
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025