Überlagerung von Schwingungen
Schwingungen können sich wie andere Bewegungen überlagern. Das Ergebnis dieser Überlagerung hängt von den gegebenen Bedingungen ab.
Überlagern sich Schwingungen gleicher Schwingungsrichtung und gleicher Frequenz, so entstehen wieder harmonische Schwingungen, deren Amplitude von der Phasenlage der Einzelschwingungen abhängt. Bei geringem Unterschied der Frequenzen der Einzelschwingungen entsteht eine Schwebung.
Bei Einzelschwingungen deutlich unterschiedlicher Frequenz entsteht als Resultierende eine Schwingung, die nicht harmonisch ist.
Bei der Überlagerung von Schwingungen, deren Schwingungsrichtung senkrecht zueinander ist, bilden sich als resultierende Schwingungen Gebilde, die als LISSAJOUS-Figuren bezeichnet werden.
Statt von Überlagerung spricht man auch von Superposition.
Überlagerung harmonischer Schwingungen gleicher Frequenz und gleicher Schwingungsrichtung
Wir betrachten zunächst die Überlagerung von zwei harmonischen, also sinusförmigen Schwingungen,
- die die gleiche Frequenz und damit die gleiche Schwingungsdauer haben und
- bei denen die Oszillatoren in der gleichen Richtung hin- und herschwingen.
Das Ergebnis der Überlagerung hängt dann von den Amplituden der Einzelschwingungen und von ihrer Phasenlage zueinander ab. In Bild 1 ist der Spezialfall zweier Teilschwingungen gleicher Amplitude dargestellt, wobei die Phasendifferenz zwischen den beiden Schwingungen null ist. Allgemein gilt:
Die resultierende Schwingung ergibt sich durch algebraische Addition der Einzelschwingungen, wobei die Vorzeichen zu beachten sind.
Beträgt die Phasendifferenz zwischen den beiden Teilschwingungen null (Bild 2), dann addieren sich die Auslenkungen an jeder Stelle. Die resultierende Schwingung hat die gleiche Phasenlage, ihre Amplitude ist gleich der Summe der Amplituden der Einzelschwingungen. Es gilt:
Das kann man auch sofort aus dem rechts in Bild 2 gezeichneten Zeigerdiagramm ermitteln.
Beträgt die Phasendifferenz zwischen den beiden Teilschwingungen 180° in Gradmaß oder in Bogenmaß (Bild 3), dann ergibt sich aufgrund der Vorzeichen die jeweilige Elongation als Differenz der Elongationen der beiden Teilschwingungen. die Schwingungsgleichung der resultierenden Schwingung lautet:
Auch diese Beziehung kann man sofort aus dem rechts in Bild 3 gezeichneten Zeigerdiagramm ablesen.
Bei einer beliebigen Phasendifferenz zwischen den beiden Teilschwingungen gibt es drei Möglichkeiten, zu der resultierenden Schwingung zu kommen:
- Es werden im y-t-Diagramm punktweise die Elongationen addiert. Damit erhält man die Schwingungskurve der resultierenden Schwingung, so wie sie in Bild 4 rechts dargestellt ist.
- Man zeichnet für einen bestimmten Zeitpunkt die Zeiger der beiden Einzelschwingungen und addiert diese Zeiger vektoriell (Bild 4 links). Damit kennt man nicht nur die Amplitude der resultierenden Schwingung, sondern auch ihre Phasenlage bezüglich der beiden Einzelschwingungen. Das ist sicher die eleganteste Methode.
- Man arbeitet mit den Schwingungsgleichungen:
Überlagerung harmonischer Schwingungen unterschiedlicher Frequenz und gleicher Schwingungsrichtung
In diesem Fall kommt man nur durch die punktweise Addition der Elongationen zu der resultierenden Schwingung, die in Abhängigkeit von den Frequenzen der Einzelschwingungen und deren Amplituden sehr unterschiedliche Formen haben kann. In Bild 5 ist ein Beispiel dargestellt.
Unterscheiden sich die Frequenzen der beiden Schwingungen, die sich überlagern, nur geringfügig, so entsteht als Resultierende eine Schwingung, deren Frequenz gleich der Differenz aus den Frequenzen der beiden Einzelschwingungen ist. Das bezeichnet man als eine Schwebung. Sie äußert sich z.B. bei Schallschwingungen so, dass man bei zwei Stimmgabeln mit geringen Frequenzunterschieden einen langsam an- und abschwellenden Ton registriert. Beträgt z.B. die Frequenz der einen Teilschwingung 30 Hz und die der anderen 31 Hz, so ist die Frequenz der resultierenden Schwingung
31 Hz - 30 Hz = 1 Hz.
Überlagerung harmonischer Schwingungen bei senkrechter Schwingungsrichtung der Teilchen zueinander
Liegen die Schwingungsrichtung von zwei Teilschwingungen senkrecht zueinander, so findet man die resultierende Schwingung durch vektorielle Addition. Dabei entstehen je nach den Frequenz- und Phasenverhältnissen interessante geometrische Figuren (Bild 6), die nach dem französischen Physik JULES ANTOINE LISSAJOUS (1822-1880) als LISSAJOUS-Figuren bezeichnet werden. Realisieren kann man solche LISSAJOUS-Figuren mithilfe eines Doppelpendels oder mit einem Oszillografen, indem man den einen Generator an die X-Ablenkung und den anderen an die Y-Ablenkung anschließt.