Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 8 Spezielle Relativitätstheorie
  4. 8.3 Relativistische Kinematik
  5. 8.3.0 Relativistische Kinematik
  6. Zwillingsparadoxon

Zwillingsparadoxon

Die Relativität der Zeitmessung wird häufig am Beispiel von Zwillingen diskutiert, die sich in zueinander bewegten Inertialsystemen befinden und wegen der Zeitdilatation unterschiedlich schnell altern. Bezeichnet wird diese Erscheinung als Zwillingsparadoxon.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Zur Ausgangssituation

Beim Zwillingsparadoxon handelt es sich um ein Gedankenexperiment mit folgender Ausgangssituation: Zwillinge haben praktisch das gleiche Alter. Sie können sich aber an verschiedenen Orten aufhalten, insbesondere auch in verschiedenen Inertialsystemen. Beispielsweise kann der eine Zwilling, den wir Erdzwilling nennen, ständig auf der Erdoberfläche verbleiben. Der andere Zwilling kann sich aber mit einer Superrakete mit sehr hoher Geschwindigkeit zu einem entfernten Planeten und wieder zurück bewegen. Wir nennen ihn Raketenzwilling. Wegen der Relativität der Zeit müsste der Alterungsprozess in den verschiedenen, zueinander bewegten Systemen unterschiedlich verlaufen. Bei seiner Rückkehr zur Erde müssten Erdzwilling und Raketenzwilling unterschiedlich gealtert sein.

Analyse des Sachverhalts

Der Raketenzwilling bewegt sich mit hoher Geschwindigkeit. Damit gehen die Uhren an Bord aufgrund der Zeitdilatation langsamer. Das gilt auch für alle Vorgänge an Bord. Somit altert der Raketenzwilling langsamer als sein auf der Erde verbliebener Erdzwilling. Das gilt sowohl beim Hinflug als auch beim Rückflug. Wenn der Raketenzwilling auf die Erde zurückkehrt, wird er seinen nun stärker gealterter Zwillingsbruder auf der Erde treffen.
Wenn z.B. für den Raketenzwilling ( Bezugssystem S') die Reise 18 Jahre dauert und die Reisegeschwindigkeit 0,8 c betrug, dann wäre für den Erdzwilling (Bezugssystem S) folgende Zeit vergangen:
Δ t = Δ t ' 1 − v 2 / c 2 = 18   a 1 − ( 0,8 ) 2 = 18   a 0 ,6 = 30   a
Bis zu diesem Punkt sind die Überlegungen völlig in Übereinstimmung mit den Prinzipien der speziellen Relativitätstheorie.
Paradox wird dieses Beispiel erst dann, wenn die Symmetrie der Zeitdilatation ins Spiel gebracht wird und der Raketenzwilling aus seiner Sicht behauptet, dass er sich nicht bewege, sondern dass sich der Erdzwilling relativ zu ihm bewege. Dann kehren sich die Aussagen über das Alter um. Der Erdzwilling wäre dann jünger als der Raketenzwilling.

Der scheinbare Widerspruch, das Paradoxon, besteht darin, dass gegensätzliche Aussagen getroffen werden, je nachdem, in welchem Bezugssystem man sich befindet.
Die Lösung ergibt sich, wenn man den Messprozess genauer betrachtet. So sind z.B. die „Lebenswelten“ der beiden Zwillinge nicht gleich. Der Erdzwilling verbleibt immer in einem Inertialsystem, der Raketenzwilling hingegen lebt in mindestens zwei verschiedenen Inertialsystemen. Darüber hinaus erfolgen auch Beschleunigungen, wobei beschleunigte Uhren ebenfalls langsamer gehen als ruhende. Die von den Uhren angezeigte Lebensdauer ist folglich nicht gleich. Der Raketenzwilling hat in bewegten Inertialsystemen gelebt. Er ist nach seiner Rückkehr der jüngere. Es gilt also: Nur für einen unbeschleunigten Beobachter altert der Andere langsamer.

Lernhelfer (Duden Learnattack GmbH): "Zwillingsparadoxon." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/zwillingsparadoxon (Abgerufen: 29. June 2025, 19:39 UTC)

Suche nach passenden Schlagwörtern

  • Inertialsystem
  • Berechnung
  • Uhrenparadoxon
  • Alterungsprozess
  • Gedankenexperiment
  • Zeitdilatation
  • allgemeine Relativitätstheorie
  • Bezugssystem
  • Relativität der Zeitmessung
  • Zwillingsparadoxon
  • Rechenbeispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Wissenstest, Spezielle Relativitätstheorie

Die von Albert Einstein entwickelte spezielle Relativitätstheorie führte zu neuen Vorstellungen von Zeit und Raum. Die Äquivalenz von Masse und Energie ist die Grundlage für das Verständnis von Kernumwandlungen und den damit verbundenen energetischen Prozessen. Die von Einstein vorhergesagte Ablenkung von Licht an großen Massen wurde durch astronomische Beobachtungen bestätigt. Moderne Kommunikationstechnik wie GPS wäre ohne Kenntnis der Relativitätstheorie nicht möglich gewesen. Im Test können Sie Ihre Kenntnisse über ausgewählte Bereiche der Relativitätstheorie prüfen.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Spezielle Relativitätstheorie".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Äthertheorie

Die Äthertheorie spielte bis in das 20. Jahrhundert hinein eine wichtige Rolle: Die Annahme eines Raumes, der mit einem Äther gefüllt sind, ermöglichte die Erklärung der Ausbreitung des Lichtes und anderer elektromagnetischer Wellen. Die Gültigkeit der Äthertheorie wurde erstmals durch die Experimente von MICHELSON und MORLEY infrage gestellt. Spätere Experimente bestätigten, dass es keinen Äther gibt.

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Erhaltungssätze in der speziellen Relativitätstheorie

In der klassischen Physik gilt für abgeschlossene Systeme neben dem Gesetz von der Erhaltung der Masse der Energieerhaltungssatz und der Impulserhaltungssatz.
Aus relativistischer Sicht ergibt sich: Aufgrund der Äquivalenz von Masse und Energie umfasst der Energieerhaltungssatz auch das Gesetz von der Erhaltung der Masse. Auch Impulserhaltungssatz und Energieerhaltungssatz sind miteinander verknüpft.

Galileisches Relativitätsprinzip

Das galileische Relativitätsprinzip trifft eine Aussage über die Gleichwertigkeit von verschiedenen Bezugssystemen in der klassischen Physik, also bei Geschwindigkeiten weit unterhalb der Lichtgeschwindigkeit. Es lautet:
Alle Inertialsysteme sind gleichberechtigt. In ihnen gelten die gleichen physikalischen Gesetze.
Daraus lassen sich Gleichungen ableiten, die es ermöglichen, die räumlichen und zeitlichen Koordinaten eines Punktes von einem Intertialsystem in ein anderes umzurechnen (GALILEI-Transformation).

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025