Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kongruenzabbildungen

Eine Kongruenzabbildung (Bewegung) ist eine umkehrbar eindeutige Abbildung der einen Figur F 1 auf eine andere Figur F 2 .
Zwei Figuren F 1 und F 2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
Schreibweise: F 1 ≅ F 2
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Bewegungen, Nacheinanderausführen

Die Nacheinanderausführung zweier Bewegungen ist wieder eine Bewegung.
Die Nacheinanderausführung zweier Verschiebungen ist wieder eine Verschiebung.
Die Nacheinanderausführung zweier Drehungen um das gleiche Drehzentrum ist wieder eine Drehung um dieses Drehzentrum.
Die Nacheinanderausführung zweier Spiegelungen an einander im Punkt S schneidenden Geraden g und h ist eine Drehung um S.
Die Nacheinanderausführung zweier Spiegelungen an zueinander parallelen Geraden g und h ist eine Verschiebung senkrecht zu den beiden Geraden.

Artikel lesen

Kongruenz von Figuren

Zwei Figuren F   1 und F   2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
In zueinander kongruenten Figuren sind alle einander entsprechenden Strecken und Winkel gleich groß.
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Drehung

Eine Drehung um einen Punkt Z mit dem Drehwinkel α ist eine eineindeutige Abbildung der Ebene auf sich selbst, bei der für das Bild P' jedes Punktes P gilt:

  • P' liegt auf dem Kreis um Z durch P.
  • ∢ (P'ZP) = α
Artikel lesen

Gleichungen der Kegelschnitte

Im Allgemeinen werden (nur) Kegelschnitte in sogenannter achsenparalleler Lage betrachtet. Dann lassen sich relativ einfache Mittelpunktsgleichungen für Kreis, Ellipse und Hyperbel sowie eine allgemeine Scheitelgleichung für alle Kegelschnitte angegeben.

Artikel lesen

Koordinatentransformationen

Mitunter erweist es sich als zweckmäßig, den Ursprung des Koordinatensystems zu verschieben oder die Achsen um den Ursprung zu drehen. Dies bzw. eine Kombination aus beiden Bewegungen wird als Koordinatentransformation bezeichnet.
Hierbei sollen folgende Voraussetzungen eingehalten werden:

  1. Die (Rechts-)Orientierung des Systems bleibt erhalten.
  2. Die Skalierung des Systems bleibt erhalten.
Artikel lesen

Wiener Walzer

Der Wiener Walzer ist ein in den 1820er-Jahren hauptsächlich von den Komponisten und Kapellenleitern

  • JOSEF LANNER (1801–1843) und
  • JOHANN STRAUSS (Vater, 1804–1849)

in Wien entwickelter Walzertyp, der zur beherrschenden Erscheinungsform der Tanz- und Unterhaltungsmusik im Europa des 19. Jh. geworden ist.

7 Suchergebnisse

Fächer
  • Mathematik (6)
  • Musik (1)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025