Direkt zum Inhalt

13 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Francois Vieta

FRANÇOIS VIÈTE (1540 bis 1603), französischer Mathematiker
* 1540 in Fontenay-le-Comte
† 13. Dezember 1603 in Paris

FRANÇOIS VIÈTE arbeitete auf den Gebieten der Trigonometrie und Gleichungslehre.
Unter anderem beschäftigte er sich mit der Berechnung der Kreiszahl π . Zu seinen Verdiensten gehört die Einführung von Buchstaben als allgemeine Zahlzeichen.

Artikel lesen

Niccolò Tartaglia

NICCOLÒ TARTAGLIA (etwa 1500 bis 1557), italienischer Rechenmeister
* 1499 oder 1500 Brescia
† 14. Dezember 1557 Venedig

NICCOLÒ TARTAGLIA war Rechenmeister in seiner italienischen Heimatstadt Brescia sowie u. a. in Verona und Venedig. Anlässlich eines Rechenwettbewerbs beschäftigte sich TARTAGLIA intensiv mit der Lösung kubischer Gleichungen. Durch geschickte Substitution gelang es ihm, eine Lösungsformel für allgemeine kubische Gleichungen zu finden, die heute als cardanische Formel bekannt ist.

Artikel lesen

Binome

Zweigliedrige Ausdrücke, sogenannte Binome, nehmen wegen ihres häufigen Auftretens in der Mathematik einen besonderen Platz ein.
Dabei sind Potenzen von Binomen ( a + b ) n von großem Interesse.
Wenn a, b und n natürliche Zahlen sind, gilt folgende Beziehung, die auch binomischer Satz genannt wird:
( a + b ) n = ∑ k = 0 n ( n k ) ⋅ a n − k ⋅ b k

Artikel lesen

Cardanische Formel

Die kubische Gleichung oder Gleichung dritten Grades hat die allgemeine Form
A x 3 + B x 2 + C x + D = 0     ( A ≠ 0 ) .
Nach Division durch A hat sie die Form
x 3 + a x 2 + b x + c = 0 .
Nach dem Fundamentalsatz der Algebra hat eine kubische Gleichung genau drei Lösungen. Eine Lösungsformel, die sogenannte cardanische Formel, wurde in der Renaissance gefunden und im Jahre 1545 veröffentlicht.

Artikel lesen

Zur Geschichte der komplexen Zahlen

In der Geschichte der Mathematik führt der Weg zu den komplexen Zahlen über die Untersuchung von Quadratwurzeln mit negativem Radikanden.
Es ist ein Zeitraum von fast tausend Jahren, der erforderlich war, um Zahlen der Form a + −   b   ( a ,     b       r e e l l ,       b > 0 ) den Schleier des Unwirklichen zu nehmen und sie als Elemente einer die reellen Zahlen einschließenden Zahlenmenge zu verstehen.

Artikel lesen

Niccolò Tartaglia

* um 1500 Brescia;
† 14. Dezember 1557 Venedig

NICCOLÒ TARTAGLIA war Rechenmeister in seiner Heimatstadt Brescia sowie u.a. in Verona und Venedig. Anlässlich eines Rechenwettstreits beschäftigte er sich intensiv mit dem Lösen kubischer Gleichungen. Die von TARTAGLIA gefundene Lösungsformel für derartige Gleichungen ist heute unter dem Namen cardanische Formel bekannt.

Artikel lesen

François Vieta

* 1540 in Fontenay-le-Comte
† 13. Dezember 1603 in Paris

FRANÇOIS VIÈTE – der Name wird meist in der latinisierten Form VIETA (gesprochen: Vi-eta) angegeben – arbeitete auf den Gebieten der Trigonometrie und Gleichungslehre.
Unter anderem beschäftigte er sich mit der Berechnung der Kreiszahl π . Zu seinen Verdiensten gehört die Einführung von Buchstaben als allgemeine Zahlzeichen.

Artikel lesen

Sekantennäherungsverfahren (regula falsi)

Ist das exakte Ermitteln der Nullstellen einer Funktion nicht möglich oder sehr aufwendig, so können diese mithilfe geeigneter Verfahren näherungsweise bestimmt werden. Ein solches Verfahren, das (zudem) ohne die Mittel der Infinitesimalrechnung auskommt, ist das Sekantennäherungsverfahren, die sogenannte regula falsi (Regel des „falschen“ Wertes).

Artikel lesen

Mathematik

Die Mathematik ist vor allem gekennzeichnet durch ihren weitestgehend deduktiven (axiomatischen) Aufbau, durch die Genauigkeit ihrer Begriffe sowie die Strenge ihrer Beweise. Sie steht in enger Wechselbeziehung mit anderen Wissenschaften, insbesondere den Naturwissenschaften.
Im Folgenden werden Informationen zu Teilgebieten und zur Geschichte der Mathematik gegeben.

Artikel lesen

Geronimo Cardano

* 24. September 1501 Pavia
† 21. September 1576 Rom

GERONIMO CARDANO arbeitete auf dem Gebiet der Algebra und beschäftigte sich insbesondere mit dem Lösen kubischer Gleichungen. Die nach ihm benannte Lösungsformel (die cardanische Formel) stammt allerdings vom venezianischen Rechenmeister NICCOLÒ TARTAGLIA.
CARDANOS Studie „Liber de ludo aleae“ gilt als erste systematische Untersuchung auf dem Gebiet der Wahrscheinlichkeitsrechnung.
Auf CARDANO gehen physikalische Erfindungen wie das Kardangelenk, die Kardanwelle bzw. die kardanische Aufhängung zurück. Zudem beschreib er als Erster den Verlauf der Typhuskrankheit.

Artikel lesen

Die cardanische Formel

Eine Lösungsformel für eine kubische Gleichung oder Gleichung dritten Grades wurde in der Renaissance gefunden und im Jahre 1545 veröffentlicht.
Sie ist nach dem italienischen Mathematiker und Arzt GERONIMO CARDANO (1501 bis 1576) benannt, obwohl sie eigentlich auf NICCOLÒ TARTAGLIA (etwa 1500 bis 1557) zurückgeht.

Artikel lesen

Gleichungen

Eine Gleichung ist ein mathematischer Ausdruck, bestehend aus zwei Termen, die durch das Gleichheitszeichen verbunden sind. Die beiden Terme heißen linke bzw. rechte Seite der Gleichung.

Artikel lesen

Ganze Zahlen, Historisches

Negative Zahlen galten lange Zeiten als suspekt. DIOPHANT VON ALEXANDRIA (um 250) beschäftigte sich mit zahlentheoretischen Fragen und dem Lösen von Gleichungen. Er wusste, dass es auch negative Lösungen gab, ließ diese aber nicht gelten. Im indischen Kulturkreis wurden negative Zahlen z. B. zum Beschreiben von Schulden angewandt. In Europa führten erst Mathematiker der Renaissance negative Zahlen im Zusammenhang mit dem Lösen von Gleichungen ein.

13 Suchergebnisse

Fächer
  • Mathematik (13)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (7)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025