Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Faktorregel der Differenzialrechnung

Es sei g mit y = g ( x ) eine über ihrem gesamten Definitionsbereich D f differenzierbare Funktion mit der Ableitung y ′ = g ′ ( x ) .
Durch Multiplikation der Funktionsgleichung von g mit dem konstanten Faktor k ∈ ℝ erhält man die Funktion f ( x ) = k ⋅ g ( x ) .

Artikel lesen

Konstantenregel der Differenzialrechnung

Wir vermuten das Folgende: Eine konstante Funktion f ( x ) = c       ( c ∈ ℝ ,       a b e r       f e s t ) besitzt für alle x ∈ ℝ die Ableitung f ′ ( x ) = 0.

Artikel lesen

Kurvendiskussion einer ganzrationalen Funktion

In den Natur- bzw. Technikwissenschaften versucht man, bestehende Sachverhalte mithilfe von Funktionen zu modellieren und zu beschreiben. Um die vorliegenden Zusammenhänge besser zu verstehen, ist es oft hilfreich, den Verlauf der entsprechenden Funktionsgraphen genauer zu untersuchen. Sofern keine Funktionsplotter zur Verfügung stehen, ist es notwendig, typische Eigenschaften der zu untersuchenden Funktion mithilfe geeigneter Methoden der Analysis zu bestimmen und den Funktionsgraphen danach zu zeichnen.

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Funktionen mit der Gleichung y = f(x) = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Nullstellen gebrochenrationaler Funktionen

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist ein Beispiel für eine stückweise erklärte stetige Funktion.

Artikel lesen

Grafische Darstellungen mit einem Tabellenkalkulationsprogramm

Zu den hervorgehobenen Fähigkeiten einer Tabellenkalkulation gehören das Zeichnen von Diagrammen und so auch die grafische Darstellung von Funktionen.

Obwohl die unterschiedlichen Kalkulationsprogramme in den Grundfunktionen übereinstimmen, können sie sich in Bezeichnungen und auch in einzelnen Schrittfolgen durchaus voneinander unterscheiden. Die folgenden Beschreibungen beziehen sich deshalb auf die Tabellenkalkulation MS EXCEL.

9 Suchergebnisse

Fächer
  • Mathematik (9)
Klassen
  • 5. Klasse (10)
  • 6. Klasse (10)
  • 7. Klasse (10)
  • 8. Klasse (10)
  • 9. Klasse (10)
  • 10. Klasse (10)
  • Oberstufe/Abitur (9)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025