Direkt zum Inhalt

429 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Bereichsintegrale

Zum Begriff des bestimmten Integrals gelangt man über die Berechnung des Inhalts von Flächen unter den Graphen von Funktionen der Form y = f ( x ) , d.h. von Funktionen einer Variablen.
Überträgt man dieses Vorgehen auf Funktionen zweier Variablen der Form z = f ( x ,   y ) , so gelangt man zum Begriff des Bereichsintegrals (auch Gebietsintegral genannt).

Artikel lesen

Zum Begriff „Bestimmtes Integral“

Im Folgenden betrachten wir Überlegungen zur Definition des Begriffes „Bestimmtes Integral“.

Artikel lesen

Bestimmtes Integral als Funktion der oberen Grenze

Der Wert eines bestimmten Integrals hängt von der Integrandenfunktion und den Integrationsgrenzen ab. Bei gegebener Integrandenfunktion können sich Untersuchungen am bestimmten Integral auf die Überprüfung des Einflusses von Veränderungen der Integrationsgrenzen beschränken.

Artikel lesen

Regeln für das Berechnen bestimmter Integrale

Für das Berechnen bestimmter Integrale von im Intervall [a; b] stetigen Funktionen f und g können folgende Regeln Anwendung finden:

  • Regel zur Übereinstimmung bzw. Vertauschung von Integrationsgrenzen;
  • Regel der Intervalladditivität;
  • Faktorregel;
  • Summenregel
Artikel lesen

Berechnung der Bogenlänge

Die Berechnung der Bogenlänge ist für die Bearbeitung innermathematischer und vieler technischer (insbesondere bautechnischer) Probleme bedeutsam.
Als Beispiele seien die Berechnung der Länge eines Parabelbogens, der Kettenlinie, einer Schleife oder eines Brückenbogens genannt.

Artikel lesen

Bonaventura Cavalieri

* 1598 Mailand
† 30. November 1647 Bologna

BONAVENTURA FRANCESCO CAVALIERI lehrte in Bologna und arbeitete vor allem auf dem Gebiet der Geometrie. Seine Berechnungen zu Flächeninhalten und Volumina, insbesondere das Prinzip der Indivisiblen, bereiteten die Entwicklung von Methoden der Infinitesimalrechnung vor.

Artikel lesen

Die elektrische Spannung

Neben vielen anderen Anwendungen ist die Mathematik in der Physik für die Definition physikalischer Größen bedeutsam. Im Folgenden wird die Arbeit im radialsymmetrischen elektrischen Feld berechnet, woraus dann weitere Größen gewonnen werden.

Artikel lesen

Flächenberechnung durch Integralrechnung

Aus der geometrischen Deutung des bestimmten Integrals resultiert die Flächenberechnung als grundlegende Anwendung der Integralrechnung.
Dabei erfordern Unterschiede in Form und Lage der jeweiligen Flächen im Koordinatensystem spezifische Vorgehensweisen.
Man hat zu unterscheiden zwischen Flächen unter Funktionsgraphen, die im betrachteten Intervall

  • ausschließlich oberhalb der x-Achse,
  • ausschließlich unterhalb der x-Achse oder
  • oberhalb und unterhalb der x-Achse liegen, sowie
  • Flächen, die zwischen zwei Funktionsgraphen liegen.
Artikel lesen

Flächeninhaltsberechnungen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Flächeninhaltsberechnungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Paul Guldin

* 12. Juni 1577 Mels (St. Gallen)
† 3. November 1643 Graz

PAUL GULDIN war Professor für Mathematik, u.a. in Wien und Graz. In einem seiner Werke gibt er Formeln zur Berechnung der Oberfläche und des Volumens von Rotationskörpern an. Diese sogenannten guldinschen Regeln sollen allerdings schon dem griechischen Mathematiker PAPPOS von Alexandria bekannt gewesen sein.

Artikel lesen

Hauptsatz der Differenzial- und Integralrechnung

Der Hauptsatz der Differenzial- und Integralrechnung wird nach den Begründern der Infinitesimalrechnung häufig auch als Formel nach NEWTON-LEIBNIZ bezeichnet.
Er stellt den Zusammenhang zwischen der Differenzial- und Integralrechnung her und verbindet zwei Sachverhalte miteinander, denen völlig unterschiedliche Probleme zugrunde liegen.

Artikel lesen

Zu den Anfängen der Integralrechnung

Während die Differenzialrechnung in der Untersuchung des Tangentenproblems wurzelt, war die Beschäftigung mit Inhaltsproblemen Ausgangspunkt für die Entstehung der Integralrechnung.

Dabei erregte das Inhaltsproblem sehr viel früher das Interesse als die Frage danach, ob für einen beliebigen Funktionsgraphen in einem vorgegebenen Punkt die Tangente an den Graphen existiert und wie man ihre Steigung ermitteln kann.

Bereits vor der Phase der griechisch-hellenistischen Mathematik waren einfache Methoden zur Berechnung der Flächeninhalte einzelner Vielecke und der Volumina einfacher Körper bekannt – gekleidet in die Form von „Rezepten“.

Artikel lesen

Integration durch Partialbruchzerlegung

Lässt sich bei der Integration gebrochenrationaler Funktionen der Funktionsterm nicht durch eine einfache Division in eine Summe umwandeln, so kann die Integration durch Partialbruchzerlegung angewendet werden.

Ist der Integrand eine unecht gebrochenrationale Funktion, so wird diese zunächst durch Partialdivision in eine ganzrationale Funktion und eine echt gebrochenrationale Funktion zerlegt.

Den echt gebrochenrationalen Anteil schreibt man dann mittels Partialbruchzerlegung als eine Summe einfacher Teilbrüche.

Der Lösungsansatz für die Partialbruchzerlegung ist hierbei davon abhängig, ob die Funktion im Nenner einfache oder mehrfache, reelle oder komplexe Nullstellen hat.

Artikel lesen

Integration durch lineare Substitution

Während beim Differenzieren elementarer Funktionen wieder elementare Funktionen entstehen, gibt es zahlreiche elementare Funktionen, deren unbestimmte Integrale sich nicht durch elementare Funktionen ausdrücken lassen.
Scheinbar geringfügige Veränderungen im Funktionsterm erfordern u.U. völlig andere Lösungswege oder führen zu nicht mehr elementar integrierbaren Funktionen.

Als Beispiele seien die Funktionen f ( x ) = x   ⋅   sin   x         u n d         g ( x ) = x sin   x genannt:
Während die Funktion f mit der Methode der partiellen Integration elementar integrierbar ist, kann man das Integral der Funktion g nicht mit elementaren Mitteln berechnen. Ähnlich verhalten sich die Funktionen f ( x ) = x   ⋅   e x         u n d         g ( x ) = e x x .

Bei der Integration von Produkten von Funktionen oder von verketteten Funktionen findet häufig die Substitutionsmethode Anwendung.

Artikel lesen

Integration durch nichtlineare Substitution

Ist im Integranden eines Integrals eine verkettete Funktion und außerdem noch die Ableitungsfunktion der inneren Funktion als Faktor vorhanden, so kann die Integration durch nichtlineare Substitution erfolgen.

Artikel lesen

Gleichungen der Kegelschnitte

Im Allgemeinen werden (nur) Kegelschnitte in sogenannter achsenparalleler Lage betrachtet. Dann lassen sich relativ einfache Mittelpunktsgleichungen für Kreis, Ellipse und Hyperbel sowie eine allgemeine Scheitelgleichung für alle Kegelschnitte angegeben.

Artikel lesen

Kegelschnitte in Polarkoordinatendarstellung

Zur Darstellung von Kegelschnitten in Polarkoordinaten werden die folgenden Umrechnungsformeln (von kartesischen Koordinaten in Polarkoordinaten) benutzt:
  x = r ⋅ cos ϕ y = r ⋅ sin ϕ   ( ∗ )

Durch Einsetzen in die Mittelpunkts- oder Scheitelgleichungen des entsprechenden Kegelschnittes und anschließendes Umformen ergeben sich die gewünschten Darstellungen.

Artikel lesen

Johannes Kepler

* 27. Dezember 1571 Weil der Stadt
† 15. November 1630 Regensburg

JOHANNES KEPLER war einer der bedeutendsten Astronomen der frühen Neuzeit und entdeckte die nach ihm benannten Gesetze der Planetenbewegung. Damit gehört er neben NIKOLAUS KOPERNIKUS, GALILEO GALILEI und ISAAC NEWTON zu den Wegbereitern eines neuen wissenschaftlichen Weltbildes, mit dem religiöse Auffassungen überwunden und naturwissenschaftliche Erkenntnisse Grundlage der Vorstellungen wurden.
KEPLER entwickelte aus der Antike stammende Methoden zur Volumenberechnung weiter, so geht u.a. eine Näherungsformel für das Volumen von Rotationskörpern (die sogenannte keplersche Fassregel) auf ihn zurück.

Artikel lesen

Lagebeziehungen zweier Kreise

Zwei Kreise können keinen Punkt gemein haben, sich in genau einem Punkt berühren oder sich in genau zwei Punkten schneiden.
Die möglichen Schnittgebilde erhält man analytisch, indem die entsprechenden Kreisgleichungen auf gemeinsame Lösungen untersucht werden.

Artikel lesen

Kreise und Kugeln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kreise und Kugeln".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Pol und Polare am Kreis

Mithilfe des Kreises ist eine eineindeutige Abbildung (Zuordnung) zwischen der Menge aller Punkte (außer dem Kreismittelpunkt M) und der Menge aller Geraden (außer den Geraden durch M) definiert. Diese wird Polarität am Kreis genannt.

Artikel lesen

Das sphärische oder das Kugeldreieck

Die sphärische Geometrie ist die Geometrie auf der Kugel, die sphärische Trigonometrie die Trigonometrie der Kugeloberfläche. Dass beide von der Geometrie und der Trigonometrie der Ebene verschieden sein müssen, erkennt man schon daran, dass es auf der Kugel keine Geraden im Sinne der klassischen ebenen Geometrie und Trigonometrie gibt.
Im Weiteren werden Kugeldreiecke definiert und insbesondere eulersche Dreiecke betrachtet. Zur Berechnung sphärischer Dreiecke werden u.a. der sphärische Sinussatz, der Winkelkosinussatz und der Seitenkosinussatz verwendet.

Artikel lesen

Kugel und Ebene

Eine Kugel und eine Ebene können keinen Punkt (Fall 1), genau einen Punkt (Fall 2) oder unendlich viele Punkte, die auf einem Kreis (dem Schnittkreis) liegen (Fall 3), gemeinsam haben.

Artikel lesen

Kugel und Gerade

Für die Lage einer Kugel bezüglich einer Geraden gibt es die folgenden Möglichkeiten:

  1. Kugel und Gerade haben keinen Punkt gemeinsam (Fall 1);
  2. Kugel und Gerade haben genau einen Punkt gemeinsam (Fall 2);
  3. Kugel und Gerade haben genau zwei Punkte gemeinsam (Fall 3)

Im Fall 1 nennt man die Gerade eine Passante, im Fall 2 eine Tangente und im Fall 3 eine Sekante.

Artikel lesen

Kugelgleichungen

Ausgehend vom Begriff der Kugel lassen sich mithilfe eines kartesischen Koordinatensystems Gleichungen (in vektorieller Form und als Koordinatengleichungen) entwickeln. Eine Kugel kann auch durch eine Parametergleichung beschrieben werden.

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

429 Suchergebnisse

Fächer
  • Mathematik (429)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025