Direkt zum Inhalt

18 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum eine Stoffprobe oder Stoffportion einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Archimedes

ARCHIMEDES von Syrakus, griechischer Mathematiker, Physiker und Erfinder
* um 287 v. Chr. Syrakus
† 212 v. Chr. Syrakus

ARCHIMEDES gewann viele seiner Ergebnisse auf experimentellem Wege und wandte sie auch an. Auf dem Gebiet der Mathematik beschäftigte er sich insbesondere mit geometrischen Inhalten.

Artikel lesen

Geometrische Körper

Ein geometrischer Körper ist die Menge aller Punkte, Geraden und Ebenen des dreidimensionalen Raumes, die innerhalb eines vollständig abgeschlossenen Teils dieses Raumes liegen.
Die Summe der Flächeninhalte der Begrenzungsflächen bildet den Oberflächeninhalt, der vollständig umschlossene Raum das Volumen des Körpers.

Artikel lesen

Kugelvolumen, Herleitung

Zur Herleitung der Formel für das Volumen einer Kugel kann nach einer Idee von GALILEI ein Körper geschaffen werden, der in gleichen Höhen den gleichen Querschnitt wie eine Halbkugel hat. Ein solcher Körper entsteht, wenn man aus einem Kreiszylinder mit dem Grundflächenradius r und der Höhe r einen Kreiskegel mit gleicher Grundfläche und gleicher Höhe herausschneidet.

Artikel lesen

Kugelvolumen nach Archimedes

Der berühmte griechische Mathematiker ARCHIMEDES konnte durch eine geschickte physikalische Überlegung als erster die Formel für das Volumen einer Kugel herleiten, indem er die Volumina dreier Körper verglich.

Artikel lesen

Wissenstest - Pyramide, Kegel, Kugel, Polyeder

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Pyramide / Kegel / Kugel / Polyeder".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Kugel

Die Kugel ist die Menge aller Punkte des Raums, die von einem festen Punkt M, dem Mittelpunkt der Kugel, den gleichen Abstand r haben. Der Abstand heißt Radius der Kugel.

Artikel lesen

Kugelteile

Wird eine Kugel durch eine Ebene oder mehrere Ebenen geschnitten, so entstehen verschiedene Schnittfiguren.
Beim Schnitt einer Kugel durch eine Ebene entstehen zwei Kugelabschnitte (Kugelsegmente). Verläuft diese Schnittebene genau durch den Kugelmittelpunkt, entstehen zwei Halbkugeln.

Artikel lesen

Archimedes, Leistungen

ARCHIMEDES von Syrakus, griechischer Mathematiker, Physiker und Erfinder
* um 287 v. Chr. Syrakus
† 212 v. Chr. Syrakus

ARCHIMEDES wissenschaftliche Leistungen liegen vor allem auf dem Gebiet der Mathematik und der Naturwissenschaften. Bekannt sind u. a. folgende Schriften von ihm:

  • dem Begriff „Schwerpunkt“ von Flächen und Körpern
  • Methoden zur Flächeninhalts- und Volumenbestimmung mathematischer Figuren und Körper
  • mathematischen Grundlagen physikalischer Prozesse (Hebelgesetz)
  • astronomischen Inhalten
Artikel lesen

Kreise und Kugeln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kreise und Kugeln".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Das sphärische oder das Kugeldreieck

Die sphärische Geometrie ist die Geometrie auf der Kugel, die sphärische Trigonometrie die Trigonometrie der Kugeloberfläche. Dass beide von der Geometrie und der Trigonometrie der Ebene verschieden sein müssen, erkennt man schon daran, dass es auf der Kugel keine Geraden im Sinne der klassischen ebenen Geometrie und Trigonometrie gibt.
Im Weiteren werden Kugeldreiecke definiert und insbesondere eulersche Dreiecke betrachtet. Zur Berechnung sphärischer Dreiecke werden u.a. der sphärische Sinussatz, der Winkelkosinussatz und der Seitenkosinussatz verwendet.

Artikel lesen

Kugel und Tangentialkegel

Durch einen beliebigen Punkt P außerhalb einer Kugel k lassen sich unendlich viele Geraden so legen, dass jede von ihnen eine Tangente der Kugel k ist.
Diese Geraden – also die Tangenten – bilden einen (doppelten) Kreiskegel, den Tangentialkegel der Kugel k mit der Spitze P.
Die Berührungspunkte aller Tangenten, die einen Tangentialkegel bilden, liegen auf einem Kreis, also in einer Ebene.

Artikel lesen

Paul Cézanne

* 19. Januar 1839 in Aix-en-Provence
† 23. Oktober 1906 in Aix-en-Provence

Artikel lesen

Elemente der sphärischen Geometrie und sphärischen Trigonometrie

Die sphärische Geometrie ist die Geometrie auf der Kugel, die sphärische Trigonometrie ist die Trigonometrie der Kugeloberfläche. Dass beide von der Geometrie und der Trigonometrie der Ebene verschieden sein müssen, erkennt man schon daran, dass es auf der Kugel keine Geraden im Sinne der klassischen ebenen Geometrie und Trigonometrie gibt.
Braucht man eine solche Geometrie und Trigonometrie der Kugeloberfläche überhaupt? Eine einfache Antwort ist: Unsere Erde hat annähernd Kugelgestalt, sie wird in der Regel als Kugel betrachtet. Will man geometrische Probleme lösen, welche die Erdoberfläche betreffen, also die Kugelgestalt der Erde berücksichtigen, muss man eine spezielle Geometrie und Trigonometrie haben. Denn schon die Entfernung zweier Orte auf der Erdkugel, die nicht gerade nahe beieinander liegen, ist mit den Mitteln der ebenen Geometrie nicht mehr exakt zu bestimmen.

Artikel lesen

Rotationsenergie

Jeder bewegte Körper besitzt kinetische Energie (Bewegungsenergie). Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren oder einen Kreisel.
Die in einem Körper gespeicherte Rotationsenergie hängt vom Trägheitsmoment dieses Körpers und von seiner Winkelgeschwindigkeit ab. Es gilt:

E r o t = 1 2 J ⋅ ω 2 J Trägheitsmoment ω Winkelgeschwindigkeit

Artikel lesen

Galileo Galilei

* 15. Februar 1564 Pisa
† 8. Januar 1642 Arcetri (bei Florenz)

GALILEO GALILEI wirkte als Universitätsprofessor in Pisa, Padua und Florenz. Wegen seines Eintretens für die heliozentrische Lehre wurde er vom römischen Inquisitionsgericht verfolgt.
Zu den mathematischen Leistungen GALILEIS zählen die Konstruktion des Proportionalzirkels sowie die Herleitung der Formel für das Volumen einer Kugel.

Artikel lesen

Architektur des Einzelbauwerkes: Baukörper

Unter Baukörper wird das vom Menschen sichtbare und erlebbare Gesamtvolumen eines Gebäudes mit und ohne nutzbare Innenräume verstanden. Die architektonische Gestaltung ist vor allem auf die Ausformung der Grenzflächen der Baukörper gerichtet.

18 Suchergebnisse

Fächer
  • Chemie (1)
  • Kunst (2)
  • Mathematik (13)
  • Physik (2)
Klassen
  • 5. Klasse (12)
  • 6. Klasse (12)
  • 7. Klasse (12)
  • 8. Klasse (12)
  • 9. Klasse (12)
  • 10. Klasse (12)
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025