Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Drei-Sigma-Regel

Wählt man in der tschebyschewschen Ungleichung P ( |   X − E X   | ≥ α ) ≤ 1 α 2 ⋅ D 2 X für den Parameter α Vielfache der Standardabweichung σ = D X = E ( X − E X ) 2 , setzt man also α = n ⋅ σ , so erhält man:
  P ( |   X − E X   | ≥ n ⋅ σ ) ≤ 1 ( n ⋅ σ ) 2 ⋅ σ 2 = 1 n 2

Die Wahrscheinlichkeit, dass X einen Wert annimmt, der von EX um mindestens das n-fache der Standardabweichung σ abweicht, ist folglich höchstens 1 n 2 .
Für die Spezialfälle n = 1 ;       2 ;       3 ergibt sich dann Folgendes:
  P ( |   X − E X   | ≥ σ ) ≤ 1   P ( |   X − E X   | ≥ 2 σ ) ≤ 0,25   P ( |   X − E X   | ≥ 3 σ ) ≤ 0, 1 ¯

Diese aus der tschebyschewschen Ungleichung gewonnenen Aussagen werden als σ - Re g e l oder 3 σ - Re g e l bezeichnet.

Artikel lesen

Erwartungswert von Zufallsgrößen

Da Zufallsgrößen oftmals sehr komplizierte mathematische Gebilde sind, sucht man nach zahlenmäßigen Kenngrößen, die über die Zufallsgröße Wesentliches aussagen und zugleich aus Beobachtungsdaten zumindest näherungsweise einfach zu bestimmen sind.
Eine derartige Kenngröße ist der Erwartungswert.

  • Es sei X eine endliche Zufallsgröße, die genau die Werte x i       ( m i t       i ∈ { 1 ;   2 ;   ... ;   n } ) annehmen kann, und zwar jeweils mit der Wahrscheinlichkeit P ( X = x i ) . Dann nennt man die folgende Kenngröße den Erwartungswert der Zufallsgröße X:
    E X = x 1 ⋅ P ( X = x 1 ) + x 2 ⋅ P ( X = x 2 ) + ... + x n ⋅ P ( X = x n )

Anmerkung: Für EX schreibt man auch E ( X ) ,       μ ( X ) ,       μ X       o d e r       μ .

Artikel lesen

Gleichverteilungen

Der französische Mathematiker PIERRE SIMON DE LAPLACE (1749 bis 1827) untersuchte als einer der Ersten intensiv Zufallsexperimente, bei denen sinnvollerweise angenommen werden kann, dass jedes seiner Ergebnisse mit der gleichen Wahrscheinlichkeit eintritt.

Artikel lesen

Die gaußsche Glockenkurve

Der Graph der Dichtefunktion der Standardnormalverteilung trägt (vorwiegend im deutschsprachigen Raum) auch die Bezeichnung gaußsche Glockenkurve.
Die Normalverteilung selbst wurde allerdings nicht von CARL FRIEDRICH GAUSS (1777 bis 1855) entdeckt. Dessen Verdienst um die Wahrscheinlichkeitsrechnung liegt auf einer anderen Ebene. Durch seine Arbeiten zur sogenannten Fehlerrechnung hat er der Entwicklung der Stochastik wichtige Impulse gegeben.

Artikel lesen

Normalverteilung (Gauß-Verteilung)

Auf der Suche nach „dem durchschnittlichen, dem normalen Menschen“ (l' homme moyen) ließ der auf vielen Gebieten tätige belgische Wissenschaftler LAMBERT ADOLPHE JACQUES QUÉTELET (1796 bis 1874) in den 30er Jahren des 19. Jahrhunderts biometrische Messungen in großem Umfang durchführen. In vielen Fällen wurde dabei seine Vorstellung bestätigt, dass die Häufigkeitsverteilung der gemessenen Werte (etwa zum Brustumfang) einer symmetrischen Glockenkurve entspricht. Das mag wohl auch ein wichtiger Grund dafür gewesen sein, dieser gleichsam als naturgemäß angesehenen Verteilung den Namen Normalverteilung zu geben, wobei diese Bezeichnung auch zu allerlei Fehldeutungen führte – vor allem dann, wenn alles nicht Normalverteilte als anormal eingestuft wurde.

Artikel lesen

Standardnormalverteilung

Eine Normalverteilung N ( μ ;   σ 2 ) wird vollständig bestimmt durch ihren Erwartungswert μ und ihre Streuung σ 2 . Es liegt deshalb die Frage nahe, ob man eine beliebige Normalverteilung in eine spezielle Normalverteilung transformieren kann – und zwar in eine mit solchen Parametern, die den Termen ihrer Dichte- und Verteilungsfunktion eine möglichst einfache Gestalt geben. Für eine ( 0 ;   1 ) -normalverteilte Zufallsgröße wäre dies der Fall:
Für die Werte μ = 0       u n d       σ = 1 erhält man als Spezialfall die Standardnormalverteilung.

Artikel lesen

Die gaußsche Summenfunktion

Es sei X eine standardnormalverteilte Zufallsgröße mit der Dichtefunktion
  ϕ ( x ) :     x ↦ 1 2 π e −   1 2 x 2     ( x ∈ ℝ )
und der gaußschen Glockenkurve als Graph ihrer Dichtefunktion.

Die Verteilungsfunktion von X wird mit Φ bezeichnet und gaußsche Summenfunktion (bzw. auch gaußsche Integralfunktion oder GAUSSsches Fehlerintegral) genannt.
Es gilt:
  P ( X ≤ a ) = Φ ( a ) = ∫ −   ∞ a ϕ ( x )   d x

Artikel lesen

Definition der Binomialverteilung

Wird ein BERNOULLI-Experiment n-mal durchgeführt, ohne dass sich die Erfolgswahrscheinlichkeit p ändert, so ist die zufällige Anzahl der Erfolge eine Zufallsgröße X, die die n + 1 Werte 0 ;    1 ;    2 ;    ... ;    n annehmen kann.
Nach der BERNOULLI-Formel gilt dann:

\(P({genau   k   Erfolge})=P(X=k)=(nk)⋅pk⋅(1−p)n−k=:Bn; p({k})\)

Daraus folgt die Definition der Binomialverteilung.

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025