Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 6 Funktionen
  4. 6.7 Exponentialfunktionen
  5. 6.7.2 Funktionen mit y = e hoch x
  6. Eulersche Zahl

Eulersche Zahl

Die eulersche Zahl e mit
  e = 2 ,   718     281     828     459     045     235     360     287   471     352     ...
ist eine für die Wissenschaft und insbesondere für die Mathematik wichtige Zahl. Sie liegt vielen Wachstums- bzw. Zerfallsprozessen in der Natur zugrunde.
Die Zahl e ist Basis des natürlichen Logarithmus.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die eulersche Zahl e mit
  e = 2 ,   718     281     828     459     045     235     360     287   471     352     ...
ist eine für die Wissenschaft und insbesondere für die Mathematik wichtige Zahl. Sie liegt vielen Wachstums- bzw. Zerfallsprozessen in der Natur zugrunde. Beispiele dafür sind etwa die Vermehrung einer Bakterienkolonie bzw. der radioaktive Zerfall. Die Zahl e ist „Basis des natürlichen Logarithmus“.

Die Bezeichnung mit dem Buchstaben e geht auf LEONHARD EULER (1707 bis 1783) zurück.

Unter allen möglichen Basen für Exponentialfunktionen spielt die mit dem Buchstaben e (der eulerschen Zahl) bezeichnete eine besondere Rolle. Da jeder Taschenrechner eine Funktionstaste für diese Basis enthält, soll diese merkwürdige Zahl kurz erläutert werden:
e ist die Zahl, die sich (näherungsweise) ergibt, wenn man die Terme ( 1     +     1 n ) n bzw. ( 1     +     1 n ) n   + 1 für zunehmend größer werdende Werte von n berechnet (man sagt auch: „wenn n gegen unendlich geht“).

Bereits mit dem Taschenrechner kann man sich den Prozess der „Annäherung“ klarmachen, wie folgende Tabelle zeigt:


n
(n-te Näherung)
( 1     +     1 n ) n ( 1     +     1 n ) n   + 1
1 2,00000000 4,00000000
5 2,48832000 2,98598400
10 2,59374246 2,85311671
50 2,69158803 2,74541979
100 2,70481383 2,73186197
500 2,71556852 2,72099966
1000 2,71692393 2,71964086
5000 2,71801005 2,71855365
10000 2,71814593 2,71841774


Die eulersche Zahl ist wie π eine transzendente Zahl. Auf dem Taschenrechner kann man sich diese Zahl anzeigen lassen, indem man die erste Potenz von e angeben lässt:

1 - Funktionsumschalttaste (F bzw. SHIFT) – Taste ln – Taste 1 – Taste =

Eine schnelle Iteration (Näherung) ist durch folgende Summation möglich:
  e = 1 + 1 1 + 1 1 ⋅ 2 + 1 1 ⋅ 2 ⋅ 3 + 1 1 ⋅ 2 ⋅ 3 ⋅ 4 + 1 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 + ...

Analog wie es eine Zahl a gibt, um eine positive Zahl z durch 10 a darzustellen, nämlich den dekadischen Logarithmus von a, so gibt es auch eine Zahl b, den natürlichen Logarithmus von b, um z durch e b darzustellen. Diese Exponenten sind ebenfalls tabelliert. Heute kann man sie auf jedem Taschenrechner ablesen. Für wissenschaftliche Arbeiten bringt es – auch wenn es ein Anfänger in der Mathematik kaum glauben kann – Vorteile, die Basis e statt der Basis 10 zu verwenden.

Anmerkung: Wer tiefer in die Mathematik eindringen will, der steuere das Verständnis folgender schon LEONHARD EULER bekannter Beziehung an:
  e 2 π −   1 = e 2 π     i = 1

Lernhelfer (Duden Learnattack GmbH): "Eulersche Zahl." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/eulersche-zahl (Abgerufen: 19. May 2025, 23:15 UTC)

Suche nach passenden Schlagwörtern

  • Pi
  • natürlicher Logarithmus
  • transzendente Zahl
  • Zerfall
  • Basis
  • Logarithmus
  • Wachstum
  • Exponent
  • Kreiszahl
  • dekadischer Logarithmus
  • e
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Daniel Bernoulli

* 08. Februar 1700 Groningen
† 17. März 1782 Basel

Auf mathematischem Gebiet beschäftigte sich DANIEL BERNOULLI vor allem mit Problemen der Wahrscheinlichkeitsrechnung und Statistik. Darüber hinaus arbeitete er über Reihen und Differenzialgleichungen.
Seine bedeutendsten wissenschaftlichen Leitungen erzielte er auf dem Gebiet der Hydromechanik, indem ihm die mathematische Beschreibung strömender Flüssigkeiten gelang.

Wachstums- und Zerfallsprozesse

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Wachstums und Zerfallsprozesse".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Das elektrische Feld in einem Koaxialkabel

Die folgenden Probleme zum elektrischen Feld in einem Koaxialkabel stellen Anwendungen zur Logarithmusfunktion und zur Differenzialrechnung dar. Berechnet wird die elektrische Feldstärke in einem Koaxialkabel bzw. die Dimensionierung eines solchen Kabels, damit die Gefahr von Überschlägen möglichst gering ist.
Die Probleme sind als Aufgaben formuliert und durch Lösungen ergänzt.

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025