Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Sonnenfinsternisse

Allgemein spricht man von einer Finsternis, wenn der Schatten eines Himmelskörpers auf die Oberfläche eines anderen trifft. Eine Sonnenfinsternis tritt dann ein, wenn der Schatten des Mondes auf die Erdoberfläche trifft. Der Mond befindet sich dann zwischen Sonne und Erde. Es ist Neumond.

Artikel lesen

Spektren und Spektralanalyse

Unter einem Spektrum versteht man in der Optik ein Farbband und damit ein Band, das aus Licht unterschiedlicher Wellenlängen bzw. Frequenzen besteht. Spektren erhält man durch Zerlegung des von einer Lichtquelle kommenden weißen Lichtes durch Prismen oder optische Gitter.
Nach der Art der Erzeugung unterscheidet man zwischen Prismenspektren und Gitterspektren.
Nach der Art der Spektren unterscheidet man zwischen kontinuierlichen Spektren und Linienspektren bzw. zwischen Emissionsspektren und Absorptionsspektren.
Unter Spektralanalyse versteht man eine Untersuchungsmethode, bei der man aus einer Untersuchung des Spektrums darauf schließen kann, welche Stoffe am Zustandekommen des Spektrums beteiligt waren. Entwickelt wurde die Spektralanalyse um 1860 gemeinsam von dem deutschen Physiker GUSTAV ROBERT KIRCHHOFF (1834-1887) und dem Chemiker ROBERT WILHELM BUNSEN (1811-1899).

Artikel lesen

Spiegelteleskope

Spiegelteleskope sind Beobachtungsgeräte, bei denen das Licht durch einen optischen Spiegel gesammelt wird. Weitere wichtige Bauteile sind ein oder mehrere Hilfsspiegel und das Okular, die in einem Tubus angeordnet sind. Die wichtigsten Typen von Spiegelteleskopen sind der NEWTON-Spiegel, der SCHMIDT-Spiegel und der CASSEGRAIN-Spiegel. Der größte gegenwärtig genutzte Spiegel, der aus einem Glasstück gefertigt ist, hat einen Durchmesser von 8,2 m.

Artikel lesen

Streuung und Absorption von Licht

Licht tritt mit Stoffen, durch die es hindurchtritt, in Wechselwirkung. Insbesondere kommt ist durch die Wechselwirkung von Licht mit kleinen Partikeln, Atomen und Molekülen zur Ablenkung eines Teils des Lichtes aus der geradlinigen Bahn. Diese Erscheinung wird als Streuung von Licht bezeichnet. Die Intensität des gestreuten Lichtes ist teilweise abhängig von der Wellenlänge. Eng verbunden mit der Streuung von Licht sind die verschiedenen Farben des Himmels, die man beobachten kann.
Darüber hinaus wird ein Teil des Lichtes von dem Stoff, den es durchdringt, aufgenommen (absorbiert). Wie stark diese Absorption ist, wird durch den Absorptionskoeffizienten erfasst.

Artikel lesen

Totalreflexion

Geht Licht von einem optisch dichten in einen optisch dünnen Stoff über, dann ist der Brechungswinkel größer als der Einfallswinkel. Bei einem Brechungswinkel von 90° gelangt das Licht gar nicht mehr in den zweiten Stoff, es verläuft entlang der Grenzfläche. Vergrößert man davon ausgehend den Einfallswinkel noch weiter, dann wird an Licht an der Grenzfläche vollständig reflektiert. Dieser Vorgang wird als Totalreflexion bezeichnet. Totalreflexion wird z.B. bei Lichtleitern genutzt. Sie spielt auch bei Luftspiegelungen eine Rolle.

Artikel lesen

Vierfarbendruck

Vierfarbendruck ist ein Druckverfahren, mit dem farbige Bücher oder andere farbige Materialien hergestellt werden. Auch bei Farbdruckern wird dieses Verfahren genutzt. Mithilfe der Grundfarben der subtraktiven Farbmischung (Gelb, Magenta, Cyan) sowie Schwarz erhält man durch Übereinanderdrucken bzw. Nebeneinanderdrucken die unterschiedlichsten Farben.

Artikel lesen

Stanley Lloyd Miller

* 07.03.1930 Oakland (Kalifornien, USA)
† 20.05.2007 in National City (Kalifornien, USA)

MILLER war amerikanischer Biochemiker und arbeitete als Professor in San Diego, Kalifornien. Er setzte sich mit der chemischen Evolution und der Thermodynamik auseinander und lieferte 1953 in seinem berühmten MILLER-Experiment den Nachweis der Entstehungsmöglichkeit von organischen Substanzen in der Frühzeit der Erde. Dies gelang ihm, indem er ein Gemisch aus Wasser, Wasserstoff, Methan und Ammoniak über einen Zeitraum von etwa einer Woche elektrischen Entladungen aussetzte und auf diese Weise die Uratmosphäre bzw. den Urozean auf der Erde simulierte.

Artikel lesen

Wissenstest, Ausbreitung von Licht und Wechselwirkung mit Stoffen


Grundlegende Kenntnisse über die Ausbreitung von Licht und die Wechselwirkung des Lichts mit Stoffen wurden bereits in der Sekundarstufe 1 vermittelt. Das gilt für die Schattenbildung ebenso wie für die Reflexion und die Brechung. Neu ist in der Oberstufe die Einbeziehung des huygensschen Prinzips. Damit ist bei Nutzung des Wellenmodells nicht nur eine Beschreibung, sondern auch eine Erklärung für Reflexion und Brechung möglich. Im Test geht es vorrangig darum zu prüfen, ob grundlegendes Wissen zu elementaren Grundlagen vorhanden ist und auf einfache Sachverhalte angewendet werden kann.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Ausbreitung von Licht und Wechselwirkung mit Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest, Beugung, Interferenz, Polarisation, Spektren

Beugung, Interferenz und Polarisation sind wellentypische Erscheinungen, die mit dem Wellenmodell erklärt werden können. Spektren und die Spektralanalyse ermöglicht Aussagen über die Körper, von denen die betreffende Strahlung ausgegangen ist. Farbmischungen spielen nicht nur in der Mode eine Rolle, sondern werden auch bei vielen technischen Anwendungen genutzt. Ein Beispiel sind farbige Displays. Bei dem Test geht es um den Nachweis von Grundkenntnissen zur Wellenoptik und zum Inhaltsbereich Farben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Beugung, Interferenz, Polarisation, Spektren".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest, Bilder und optische Geräte


Zu den Grundlagen der Strahlenoptik gehört die Bildentstehung an Spiegeln und durch Linsen. Bei optischen Geräten werden die betreffenden physikalischen Grundlagen genutzt. In der Regel sind sie Inhalt des Physikunterrichts der Sekundarstufe 1, werden aber auch in der Sekundarstufe 2 benötigt. Mit dem Test können Sie ermitteln, inwieweit Sie elementare Grundlagen der Strahlenoptik beherrschen.

 

Multiple-Choice-Test zum Thema "Physik - Bilder und optische Geräte".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Zeigermodell in der Optik

Neben den Modellen Lichtstrahl und Lichtwelle können optische Erscheinungen auch mit dem sogenannten Zeigermodell beschrieben bzw. erklärt werden. Mit dem Zeigermodell kann man die geradlinige Ausbreitung, Reflexion und Brechung von Licht erklären. Besonders hilfreich ist es bei quantitativen Überlegungen zur Beugung und zur Interferenz von Licht.

Artikel lesen

Carl Zeiß

* 11.09.1816 in Weimar
† 03.12.1888 in Jena

Er war ein deutscher Mechaniker, Techniker und Unternehmer, der in Jena im 19. Jahrhundert ein optisches Werk von Weltgeltung aufbaute und dabei eng mit dem Forscher und Industriellen OTTO SCHOTT und dem Physiker ERNST ABBE zusammenarbeitete.

Artikel lesen

Äußerer lichtelektrischer Effekt

Der äußere lichtelektrische Effekt wird auch als äußerer Fotoeffekt oder nach seinem Entdecker, dem deutschen Physiker WILHELM HALLWACHS (1859-1922), als HALLWACHS-Effekt bezeichnet.
Der Effekt beinhaltet: Wird eine negativ geladene Metallplatte mit geeignetem Licht bestrahlt, so werden aus der Oberfläche Elektronen herausgelöst.
Der äußere lichtelektrische Effekt war einer der ersten Resultate physikalischer Untersuchungen, die das Wellenmodell des Lichtes infrage stellten. Eine erste umfassende Deutung dieses Effekts wurde von ALBERT EINSTEIN (1879-1955) im Jahr 1905 gegeben. Insbesondere für diese Leistung erhielt er 1921 den Nobelpreis für Physik.

Artikel lesen

Louis Victor de Broglie

* 15.08.1892 in Dieppe
† 19.03.1987 in Paris

Er war ein französischer Physiker, der vor allem durch seine Hypothese der Materiewellen bekannt wurde, nach der alle Mikroteilchen nicht nur über Korpuskel-, sondern auch über Welleneigenschaften verfügen. Diese Anschauung erweiterte EINSTEINs Auffassung der Lichtquanten und bildete einen wesentlichen Ausgangspunkt für die Wellenmechanik von ERWIN SCHRÖDINGER.

Artikel lesen

Der Compton-Effekt

Photonen können mit Elektronen wechselwirken. Streut man Röntgenphotonen an freien Elektronen, so haben die Photonen nach der Streuung eine kleinere Frequenz und damit eine größere Wellenlänge als zuvor. Die Photonen haben Energie und Impuls an die Elektronen abgegeben. Der Effekt wurde 1922 von dem US-amerikanischen Physiker ARTHUR HOLLY COMPTON (1892-1962) entdeckt und wird nach seinem Entdecker als COMPTON-Effekt bezeichnet.

Artikel lesen

Die de-Broglie-Wellenlänge

In seiner 1924 verteidigten Doktorarbeit entwickelte der französische Physiker LOUIS VICTOR DE BROGLIE (1892-1987) den Gedanken, dass „sowohl für die Materie wie für die Strahlung, insbesondere für das Licht, es geboten ist, den Korpuskel- und den Wellenbegriff gleichzeitig einzuführen.“ Für die Wellenlänge von Teilchen gab er folgende Gleichung an:
λ = h p = h m ⋅ v
Die Hypothese der Materiewellen wurde 1927 von DAVISSON und GERMER experimentell bestätigt, die zeigten, das Elektronenstrahlen an Kristallen gebeugt wurden, also Welleneigenschaften besitzen.

Artikel lesen

Elektronenbeugung

Elektronen sind Quantenobjekte. Es sind weder Teilchen noch Wellen. Vielmehr haben sie gleichzeitig etwas Welliges, etwas Körniges (Teilchenhaftes) und etwas Stochastisches. Schickt man Elektronen durch einen Doppelspalt oder durch ein Gitter hinreichend kleiner Spaltbreite und Gitterkonstanten, so zeigen sich ähnliche Interferenzen wie bei Licht.
Im Beitrag sind Auszüge aus der Originalveröffentlichung der Arbeit des deutschen Physikers CLAUS JÖNSSON angegeben, der die Elektronenbeugung 1960 erstmals auch am Doppelspalt zeigen konnte.

Artikel lesen

Nachweisreaktionen beim Menschen


Mithilfe einfacher Nachweisreaktionen kann man physiologische Abläufe oder Reaktionen auf Reize deutlich machen.Experimente sind immer unter Aufsicht des Lehrers durchzuführen. Auf Gefahrstoffsymbole achten!

Artikel lesen

Richard Phillips Feynman

* 11.05.1918 in Far Rockaway (Queens)
† 15.02.1988 in Los Angeles, Kalifornien

RICHARD PHILLIPS FEYNMAN war einer der bedeutendsten Physiker des 20. Jahrhunderts. Er war Mitbegründer der Quantenelektrodynamik, für deren Formulierung er 1965 gemeinsam mit zwei weiteren Wissenschaftlern mit dem Nobelpreis für Physik ausgezeichnet wurde. Er ist der einzige Physiker, der zum Verständnis aller vier Wechselwirkungen wichtige Beiträge leisten konnte. Im Zweiten Weltkrieg arbeitete er in Los Alamos an der Entwicklung der Atombombe und war Mitglied des Untersuchungsausschusses zur Challenger-Katastrophe (1986).

Artikel lesen

Werner Heisenberg

* 05.12.1901 in Würzburg
† 01.02.1976 in München

Er war einer bedeutendsten theroretischen Physiker des 20. Jahrhunderts, der mit der „Matrizenmechanik“ die moderne Quantenphysik begründete, an der Erweiterung zur Quantenfeldtheorie beteiligt war und nach einer einheitlichen Feldtheorie der Elementarteilchen (Weltformel) strebte. HEISENBERG leitete während des Zweiten Weltkrieges die Forschungen zum Bau eines Uranreaktors in Deutschland. Nach dem Krieg war er weiter als Hochschullehrer tätig.

Artikel lesen

Interferenz bei Quantenobjekten

Unter Quantenobjekten verstehen wir Elektronen, Neutronen, Protonen, Atome und Moleküle. Das Verhalten einzelner Quantenobjekte kann in der Regel nicht vorhergesagt werden. Trotzdem kann man Quantenobjekte teilweise als Teilchen betrachten. Schickt man aber Quantenobjekte durch einen Doppelspalt oder durch einen Einzelspalt, dann zeigt sich: Bei Quantenobjekten kann Interferenz auftreten. Solche Interferenzen sind im Teilchenmodell nicht beschreibbar.

Artikel lesen

Interferenz und Unbestimmtheit bei makroskopischen Objekten

Die von WERNER HEISENBERG (1901-1976) gefundene Unbestimmtheitsrelation lautet:
Δ x ⋅ Δ p ≥ h 4 π
Sie wird üblicherweise nur auf Quantenobjekte angewendet, also auf Objekte mit sehr kleinen Abmessungen. Für größere Objekte kann man dagegen Ort und Impuls sehr genau angeben. Quanteneffekte sind bei solchen Objekten nicht beobachtbar. Das bedeutet allerdings nicht, dass für solche Objekte die Unbestimmtheitsrelation nicht zutrifft. Vielmehr ist die Unbestimmtheit bei makroskopischen Objekten so gering, dass man sie vernachlässigen kann.

Artikel lesen

Interferenz von Photonen

Schickt man kohärentes Licht durch einen Doppelspalt und bringt man dahinter einen Schirm an, so kann man auf dem Schirm ein typisches Interferenzmuster beobachten. Analoge Experimente kann man auch mit einzelnen Photonen durchführen. Dann zeigt sich:

  •  
Die einzelnen Photonen sind an bestimmten Stellen nachweisbar.
  •  
Es gibt Stellen, an denen sich die nachgewiesenen Photonen häufen.
  •  
Bei großer Photonenzahl ergibt sich eine Maxima-Minima-Verteilung wie bei Versuchen mit Licht am Doppelspalt oder Gitter.
Artikel lesen

Interferenz von Röntgenstrahlung

1912 wurde durch WALTHER FRIEDRICH (1883-1968) und PAUL KNIPPING (1883-1935) erstmals die Interferenz von Röntgenstrahlung nachgewiesen. Damit wurde ihr Wellencharakter bestätigt. Aufgrund der sehr kleinen Wellenlänge von Röntgenstrahlen sind Interferenzmuster nur zu registrieren, wenn die verwendeten Gitter sehr fein sind. Diese Bedingung wird durch Kristallgitter erfüllt. Die Lage von Interferenzmaxima ist durch die sogenannten BRAGG-Gleichung gegeben. Sie lautet:
k ⋅ λ = 2   d ⋅ sin   α k
Genutzt wird die Interferenz von Röntgenstrahlen bei der Röntgenstrukturanalyse, einem Verfahren zur Bestimmung der Anordnung von Atomen und Ionen in Kristallen.

Artikel lesen

Komplementarität und Komplementaritätsprinzip

Das von NIELS BOHR (1885-1962) in die Quantenphysik eingeführte Komplementaritätsprinzip kennzeichnete er selbst mit dem Satz: „Die Begriffe Teilchen und Welle ergänzen sich, indem sie sich widersprechen; sie sind komplementäre Bilder des Geschehens.“
Nach dem Komplementaritätsprinzip kann ein Interferenzmuster nur beobachtet werden, wenn die zu einem Versuchsergebnis beitragenden klassisch denkbaren Möglichkeiten nicht durch eine Messung unterscheidbar sind („Welcher-Weg“-Information). Unterscheidbarkeit erhält man z.B. dadurch, dass man Atome verwendet, die Photonen emittieren. Man hat dies in den neunziger Jahren des 20. Jahrhunderts in verschiedenen Varianten durchgeführt: Bei einem der Experimente wurden Atome an einer stehenden Lichtwelle wie an einem Gitter gebeugt. In einer anderen wurde mithilfe von zwei stehenden Lichtwellen ein Atom-Interferometer realisiert.

Seitennummerierung

  • Previous Page
  • Seite 102
  • Seite 103
  • Aktuelle Seite 104
  • Seite 105
  • Seite 106
  • Seite 107
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025