Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Ereignisse

Unter einem Ereignis wird der Ausgang eines Zufallsexperiments (Zufallsversuchs) verstanden.
Spezielle Ereignisse sind das sichere Ereignis, das unmögliche Ereignis sowie die sogenannten Elementarereignisse (atomaren Ereignisse).

Artikel lesen

Baumdiagramme

Mithilfe von Baumdiagrammen lassen sich Vörgänge, die aus mehreren Stufen (Teilvorgängen) bestehen, veranschaulichen. Das betrifft sowohl kombinatorische Probleme als auch mehrstufige Zufallsexperimente (Zufallsversuche).

Artikel lesen

Simulation, Zufallsexperimente

Tabellenkalkulationen und Computeralgebrasysteme (CAS) eignen sich auch als Hilfsmittel zur Simulation realer Vorgänge. Mithilfe eines integrierten Zufallszahlengenarators ist es möglich, verschiedene Zufallsexperimente zu simulieren und mathematisch auszuwerten.

Artikel lesen

Urnenmodell

Viele Probleme der klassischen Wahrscheinlichkeitsrechnung lassen sich mithilfe des Urnenmodells veranschaulichen (simulieren). Dazu wird angenommen, dass sich in einem Gefäß (der Urne) eine bestimmte Anzahl (unterscheidbarer) Kugeln befinden und dass aus diesem Gefäß eine entsprechende Anzahl von Kugeln nacheinander bzw. auf einen Griff gezogen werden.

Artikel lesen

Jakob Bernoulli

* 27. Dezember 1654 (6. Januar 1655) Basel
† 16. August 1705 Basel

JAKOB BERNOULLI gilt als einer der Hauptvertreter der Infinitesimalrechnung seiner Zeit. Gemeinsam mit seinem Bruder Johann entwickelte er den „Leibnizschen Calculus“ weiter.
Mit dem aus seinem Nachlass im Jahre 1713 herausgegebenen Buch „Ars conjectandi“ wurde JAKOB BERNOULLI zum Begründer einer Theorie der Wahrscheinlichkeitsrechnung. In diesem Werk wird u.a. die Anwendung der Kombinatorik auf Glücks- und Würfelspiele beschrieben, und das (schwache) Gesetz der großen Zahlen wird formuliert.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Geometrische Wahrscheinlichkeit

Schon sehr früh in der Geschichte der Wahrscheinlichkeitstheorie hat man sich mit dem Problem des zufälligen Werfens bzw. der zufälligen Auswahl eines Punktes auf bzw. aus einem endlichen Flächenstück beschäftigt. Das mutmaßlich älteste Beispiel geht auf ISAAC NEWTON (1643 bis 1727) zurück. Im 18. Jahrhundert wurde dann der Begriff geometrische Wahrscheinlichkeit eingeführt, da es sich um Zufallsexperimente handelt, deren Versuchsausgänge geometrisch quantitativ messbare Größen sind.

Artikel lesen

Mehrstufige Zufallsexperimente

Besteht ein zufälliger Vorgang aus mehreren, nacheinander ablaufenden Teilvorgängen (oder aus Teilvorgängen, die als nacheinander ablaufend interpretiert werden können), so spricht man von einem mehrstufigen Zufallsexperiment (Zufallsversuch).

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025