Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Rationale Zahlen, Rechnen

Im Bereich der rationalen Zahlen ℚ sind die vier Grundrechenoperationen Addition, Subtraktion, Multiplikation und Division (außer durch 0) uneingeschränkt ausführbar.

Artikel lesen

Rationale Zahlen, Begriff und Darstellung

Die Menge der rationalen Zahlen ℚ enthält als Teilmenge die Menge der natürlichen Zahlen ℕ , die Menge der ganzen Zahlen ℤ und die Menge der Bruchzahlen ℚ + (Bild 1).
Die Relationen und Rechengesetze, die in diesen Zahlenbereichen gelten, gelten auch im Bereich der rationalen Zahlen.
Rationale Zahlen werden auf einer Zahlengeraden dargestellt.

Artikel lesen

Georg Cantor

GEORG CANTOR (1845 bis 1918), deutscher Mathematiker
* 3. März 1845 St. Petersburg
† 6. Januar 1918 Halle

GEORG CANTOR verfasste u. a. Abhandlungen zur Mengenlehre und schuf damit die Grundlagen einer neuen mathematischen Theorie, die die gesamte Mathematik entscheidend beeinflusste.

Artikel lesen

Georg Ferdinand Ludwig Philipp Cantor

* 3. März 1845 St. Petersburg
† 6. Januar 1918 Halle (Saale)

GEORG CANTOR, der über 30 Jahre Professor an der Hallenser Universität war, gilt als Begründer der (axiomatischen) Mengenlehre. Er formulierte die Begriffe Äquivalenz und Mächtigkeit von Mengen, auf die sich die von ihm geschaffene Theorie der Kardinalzahlen stützt.
Mithilfe des sogenannten Diagonalverfahrens zeigte CANTOR, dass es zwar unendlich viele rationale Zahlen gibt, man diese jedoch abzählen kann.

Artikel lesen

Körper

Ein Körper ist ein kommutativer Ring, in dem die vom Nullelement verschiedenen Elemente eine Gruppe bilden, d.h., ein Körper hat ein Einselement und zu jedem Element a ≠ 0 aus K ein inverses Element.
Beispiele für Körper sind die rationalen, die reellen und die komplexen Zahlen.
Von besonderem Interesse ist die Untersuchung von sogenannten Restklassenkörpern.

Artikel lesen

Intervallschachtelungen

Der (historisch gesehen) zunächst nur naiv gefasste Begriff der reellen Zahl bedurfte einer exakten Fundierung. Dies gelang RICHARD DEDEKIND (1831 bis 1916), der mithilfe eines Schnittes zwischen zwei rationalen Zahlenmengen zu einer exakten Definition der reellen Zahlen gelangte.

Ein etwas anderes Vorgehen ist die Methode der Intervallschachtelungen, die im Folgenden skizziert wird.

Dabei zeigt sich: Durch eine Intervallschachtelung in der Menge ℚ der rationalen Zahlen wird genau eine reelle Zahl (als Kern) definiert. In der Menge ℝ der reellen Zahlen besitzt jede Intervallschachtelung als Kern eine reelle Zahl, d.h., ℝ ist abgeschlossen.

Artikel lesen

Dedekindscher Schnitt

Durch einen dedekindschen Schnitt t werden Zahlenmengen in ein Paar Teilmengen A und B so zerlegt, dass für jedes a ∈ A und jedes b ∈ B die Beziehung a ≤ t ≤ b gilt (wobei t eine reelle Zahl ist).
Man kann dedekindsche Schnitte in der Menge ℚ der rationalen Zahlen benutzen, um die Menge der reellen Zahlen ℝ zu definieren.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025