Direkt zum Inhalt

15 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Rationale Zahlen, Rechnen

Im Bereich der rationalen Zahlen ℚ sind die vier Grundrechenoperationen Addition, Subtraktion, Multiplikation und Division (außer durch 0) uneingeschränkt ausführbar.

Artikel lesen

Schriftliche Subtraktion

Die Subtraktion ist in der Menge der natürlichen Zahlen ℕ nur ausführbar, wenn der Subtrahend nicht größer als der Minuend ist.
Zur schriftlichen Subtraktion schreibt man die Zahlen (analog zur schriftlichen Addition) untereinander. Man subtrahiert (von rechts beginnend) spaltenweise und notiert das Ergebnis. Ist die Subtraktion nicht ausführbar, erhöht man den Minuenden um einen (oder mehrere) Zehner, die man in der nächsten Spalte zusätzlich subtrahiert.

Artikel lesen

Äquivalenzumformungen

Gleichungen bzw. Ungleichungen mit demselben Grundbereich, die die gleiche Lösungsmenge haben, heißen zueinander äquivalent.

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn

  • die Seiten einer Gleichung vertauscht werden,
  • auf beiden Seiten einer Gleichung derselbe Term addiert oder subtrahiert wird,
  • beide Seiten einer Gleichung mit demselben Term multipliziert werden,
  • beide Seiten einer Gleichung durch denselben Term dividiert werden.

Beim Multiplizieren bzw. Dividieren mit einem bzw. durch einen Term darf dieser für keine Zahl aus der Grundmenge den Wert null annehmen.

Artikel lesen

Addition und Vielfachbildung von Matrizen

Bei Rechenoperationen mit Matrizen sind aufgrund der Entstehungsweise der Matrix als Ergebnis einer Abstraktion inhaltliche und formale Bedingungen einzuhalten.

Eine Addition (bzw. Subtraktion) von Matrizen ist nur für Matrizen gleichen Typs erklärt. Sie erfolgt elementeweise. Die Addition von Matrizen ist kommutativ, assoziativ und umkehrbar. Das skalare Vielfache einer Matrix erhält man, indem jedes Element der Matrix mit dem betreffenden Skalar multipliziert wird.

Artikel lesen

Gruppen

Eine nichtleere Menge G von Elementen a, b, c, ... heißt Gruppe, wenn in ihr eine Operation ∘ erklärt ist, die folgenden Axiomen genügt:

  1. Die Operation ∘ ist assoziativ,
    d.h. für alle Elemente a ,     b ,     c ∈ G gilt a ∘ ( b ∘ c ) = ( a ∘ b ) ∘ c .
  2. Die Operation ∘ ist umkehrbar, d.h. zu beliebigen Elementen a ,     b ∈ G sind die Gleichungen a ∘ x = b und y ∘ a = b       ( mit x ∈ G und y ∈ G )   lösbar.

Man nennt G eine abelsche Gruppe, wenn zusätzlich noch gilt:

  1. Die Operation ∘ ist kommutativ, d.h. für alle a ,     b ∈ G gilt a ∘ b = b ∘ a .
Artikel lesen

Körper

Ein Körper ist ein kommutativer Ring, in dem die vom Nullelement verschiedenen Elemente eine Gruppe bilden, d.h., ein Körper hat ein Einselement und zu jedem Element a ≠ 0 aus K ein inverses Element.
Beispiele für Körper sind die rationalen, die reellen und die komplexen Zahlen.
Von besonderem Interesse ist die Untersuchung von sogenannten Restklassenkörpern.

Artikel lesen

Darstellung komplexer Zahlen in der gaußschen Zahlenebene

Zur Veranschaulichung komplexer Zahlen wurde von CARL FRIEDRICH GAUSS eine Ebene gewählt, deren x-Achse als Einheit den reellen Wert 1 und deren y-Achse als Einheit den imaginären Wert i verwendet. Jeder komplexen Zahl a + b   i       ( m i t       a ,     b ∈ ℝ ) wird in dieser Ebene umkehrbar eindeutig ein Punkt zugeordnet.

Artikel lesen

Rechengesetze für Vektoren

Beim Vergleichen und beim Verknüpfen von Vektoren muss darauf geachtet werden, dass die Koordinatenanzahl, d.h. die Anzahl der Zeilen bei Darstellung als Spaltenvektor, übereinstimmt.
Für beliebige (n-dimensionale) Vektoren sind eine Addition sowie eine Vervielfachung mit reellen Zahlen definiert. Spezielle Produkte von Vektoren sind das Skalarprodukt sowie im dreidimensionalen Raum das Vektorprodukt und das Spatprodukt. Die Ergebnisse dieser Verknüpfungen können mithilfe der Koordinaten der zu verknüpfenden Vektoren berechnet werden.

Artikel lesen

Der Begriff des Vektorraumes

In den mathematischen Arbeitsgebieten und in vielen Anwendungsfeldern trifft man auf Größen, die man ähnlich wie Vektoren im Anschauungsraum addieren und mit einem Zahlenfaktor multiplizieren kann. Man beobachtet auch, dass dieselben grundlegenden Rechengesetze gelten.
Zwecks einheitlicher Untersuchung der sich daraus ergebenden Konsequenzen wurde der Begriff des (abstrakten) Vektorraumes eingeführt und eine weit verzweigte allgemeine Vektorraumtheorie aufgebaut.

Artikel lesen

Restklassen

Jede positive ganze Zahl m gestattet es, in der Menge ℤ der ganzen Zahlen eine Relation der folgenden Art zu definieren:

Artikel lesen

Verknüpfen von Funktionen

Funktionen mit einem gemeinsamen Definitionsbereich können addiert, subtrahiert und multipliziert werden, d.h., es gilt:
  ( f + g ) ( x ) = f ( x ) + g ( x ) ( f − g ) ( x ) = f ( x ) − g ( x ) ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )

Wenn g ( x ) ≠ 0 ist, dann lässt sich auch der Kehrwert ( 1 g ) ( x ) = 1 g ( x ) und der Quotient ( f g ) ( x ) = f ( x ) g ( x ) bilden.

Artikel lesen

Ringe

Der Begriff des Ringes baut auf dem Begriff Gruppe auf und gehört ebenso wie dieser zu den grundlegenden Strukturbegriffen der Algebra. Während bei der Gruppe nur eine zwischen den Elementen erklärte Verknüpfung betrachtet wird, werden beim Ring gleichzeitig zwei Verknüpfungen in ihrem gegenseitigen Zusammenhang betrachtet.
Die Addition und die Multiplikation sind in den Zahlenbereichen ℕ ,       ℤ ,       ℚ ,       ℝ und ℂ Operationen, die distributiv miteinander verknüpft sind.

Ein Beispiel für endliche Ringe sind Restklassenringe.

Artikel lesen

Ganze Zahlen, Rechnen

Beim Rechnen mit ganzen Zahlen kann man die Verfahren des Rechnens mit natürlichen Zahlen anwenden; es sind dann immer nur gesonderte Überlegungen zur Ermittlung des Vorzeichens im Ergebnis nötig.
Das Rechenbeispiel umfasst die Grundrechenarten für zwei und mehrere ganze Zahlen. In allen Beispielen können die gegeben Ausgangswerte durch beliebige eigene Werte ersetzt werden, man erhält jeweils das entsprechende Resultat.

Artikel lesen

Gebrochene Zahlen, Rechnen

Im Bereich ℚ + der Brüche (gebrochene Zahlen) sind die Addition, Multiplikation und die Division (außer durch 0) uneingeschränkt ausführbar. Die Subtraktion zweier Brüche liefert nur dann wieder einen Bruch, wenn der Subtrahend nicht größer als der Minuend ist.
Das Rechenbeispiel umfasst die Grundrechenarten für zwei Brüche.

Artikel lesen

Natürliche Zahlen, Rechnen

Die Addition und ihre Umkehrung, die Subtraktion sowie die Multiplikation und ihre Umkehrung, die Division, sind die sogenannten vier Grundrechenarten.
Dabei sind Addition und Subtraktion die Rechenarten erster Stufe, Multiplikation und Division sind die Rechenarten zweiter Stufe.
Das interaktive Rechenbeispiel umfasst die Grundrechenarten für zwei und mehr natürliche Zahlen. In allen Beispielen können die gegebenen Ausgangswerte durch beliebige eigene Werte ersetzt werden, man erhält jeweils das neue Resultat.

15 Suchergebnisse

Fächer
  • Mathematik (15)
Klassen
  • 5. Klasse (6)
  • 6. Klasse (6)
  • 7. Klasse (6)
  • 8. Klasse (6)
  • 9. Klasse (6)
  • 10. Klasse (6)
  • Oberstufe/Abitur (9)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025