Direkt zum Inhalt

884 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Jobst Bürgi

* 28.02.1552 Lichtensteig
† 31.01.1632 Kassel

JOBST BÜRGI wirkte als Astronom und Mathematiker in Kassel sowie am kaiserlichen Hof in Prag. Er entwickelte eine Reihe astronomischer Geräte und erfand den Proportionalzirkel.

Artikel lesen

Das Computeralgebrasystem Derive

Das Computerprogramm Derive zählt zu den leistungstarken und auch bedienungsfreundlichen Computeralgebrasystemen (CAS). Es gehört deshalb zu den an Schulen mit am meisten genutzten CAS.

Anders als ein wissenschaftlicher Taschenrechner kann ein CAS wie Derive auch Terme mit Variablen umformen und vereinfachen (symbolische Termumformungen) sowie Gleichungen und Gleichungssysteme lösen. Zu den Fähigkeiten von Derive gehören auch zwei- und sogar dreidimensionale Abbildungen.

Artikel lesen

Die dynamische Geometriesoftware Geonext

Geonext – als Weiterentwicklung von Geonet – ist ein vollständig in die Internetumgebung eingebundenes interaktives Geometrieprogramm.
Während man mit statischen Programmen „nur“ zeichnen und konstruieren kann, lassen sich Konstruktionen von Polygonen oder Kreisen, die mit einer dynamischen Geometriesoftware (DGS) wie Geonext erzeugt wurden, stetig verändern. Mithilfe des sogenannten Zugmodus können Punkte und Geraden verschoben werden, ohne dass sich die damit verbundenen charakteristischen Eigenschaften der Konstruktion ändern. Größen wie Längen und Winkel lassen sich außerdem messen und mit Berechnungen verknüpfen.

Artikel lesen

Hinweise zur Anwendung des Grafiktaschenrechners VOYAGE 200 beim Lösen von Aufgaben aus der Analysis

Ableitung, abschnittsweise definierte Funktion, Darstellung von Zahlenfolgen, Ermittlung von Grenzwerten, Funktionenschar, Funktionsuntersuchung, Gleichungen, Gleichungssysteme, grafische Darstellung von Funktionen, Integration, Koordinaten von Hoch- und Tiefpunkten, Nullstellen
Durch den Einsatz von grafikfähigen Taschenrechnern (GTR) lässt sich der Arbeits- und Zeitaufwand zum Lösen mathematischer Aufgaben wesentlich reduzieren. Die Lösung bestimmter Aufgaben wird auf diesem Wege überhaupt erst möglich. Dabei ist es für viele schultypische Aufgabenstellungen unerheblich, ob der GTR zusätzlich ein Computeralgebrasystem (CAS) besitzt oder nicht.
Obwohl die Rechnerbefehle und damit die Handhabung verschiedener Rechnertypen zum Teil recht unterschiedlich sind, lassen sich typische Arbeitsweisen durchaus an einem festgelegten Modell aufzeigen. Für die folgenden Beispiele wurde dafür der Grafiktaschenrechner (mit CAS) VOYAGE 200 ausgewählt.
Im Folgenden wird an zwölf Beispielskomplexen gezeigt, wie der VOYAGE 200 zur Lösung typischer Aufgabenstellungen aus der Analysis eingesetzt werden kann.
Grundsätzliche Vorgehensweisen werden dazu detailliert erläutert und durch 37 Schirmbildwiedergaben veranschaulicht.

Artikel lesen

Hinweise zur Anwendung des Grafiktaschenrechners VOYAGE 200 beim Lösen von Aufgaben aus der Analytischen Geometrie

Abstandsberechnungen, Berechnung von Winkeln, Gleichungssystem, Lagebeziehung von Geraden, vektorielle Geradengleichung, Vektoroperationen
Durch den Einsatz von grafikfähigen Taschenrechnern (GTR) lässt sich der Arbeits- und Zeitaufwand zum Lösen mathematischer Aufgaben wesentlich reduzieren. Die Lösung bestimmter Aufgaben wird auf diesem Wege überhaupt erst möglich. Dabei ist es für viele schultypische Aufgabenstellungen unerheblich, ob der GTR zusätzlich ein Computeralgebrasystem (CAS) besitzt oder nicht.
Obwohl die Rechnerbefehle und damit die Handhabung verschiedener Rechnertypen zum Teil recht unterschiedlich sind, lassen sich typische Arbeitsweisen durchaus an einem festgelegten Modell aufzeigen. Für die folgenden Beispiele wurde dafür der Grafiktaschenrechner (mit CAS) VOYAGE 200 ausgewählt.
Im Folgenden wird an sechs Beispielskomplexen gezeigt, wie derVOYAGE 200 zur Lösung typischer Aufgabenstellungen aus der Analytischen Geometrie und der linearen Algebra eingesetzt werden kann.
Grundsätzliche Vorgehensweisen werden dazu detailliert erläutert und durch 27 Schirmbildwiedergaben veranschaulicht.

Artikel lesen

Hinweise zur Anwendung des Grafiktaschenrechners VOYAGE 200 beim Lösen von Aufgaben aus der Stochastik

Berechnung binomialer Warscheinlichkeiten, Binomialverteilung, Erzeugung eines Histogramms, Gleichungssystem, Kombinatorik, Normalverteilung, Programm-Editor, Standardnormalverteilung, Summenzeichen, Zufallszahlen
Durch den Einsatz von grafikfähigen Taschenrechnern (GTR) lässt sich der Arbeits- und Zeitaufwand zum Lösen mathematischer Aufgaben wesentlich reduzieren. Die Lösung bestimmter Aufgaben wird auf diesem Wege überhaupt erst möglich. Dabei ist es für viele schultypische Aufgabenstellungen unerheblich, ob der GTR zusätzlich ein Computeralgebrasystem (CAS) besitzt oder nicht.
Obwohl die Rechnerbefehle und damit die Handhabung verschiedener Rechnertypen zum Teil recht unterschiedlich sind, lassen sich typische Arbeitsweisen durchaus an einem festgelegten Modell aufzeigen. Für die folgenden Beispiele wurde dafür der Grafiktaschenrechner (mit CAS) VOYAGE 200 ausgewählt.
Im Folgenden wird an zehn Beispielskomplexen gezeigt, wie derVOYAGE 200 zur Lösung typischer Aufgabenstellungen aus der Stochastik eingesetzt werden kann.
Grundsätzliche Vorgehensweisen werden dazu detailliert erläutert und durch 32 Schirmbildwiedergaben veranschaulicht.

Artikel lesen

Das Computeralgebrasystem Mathcad

Mathcad ist eine Kombination aus

  1. einer leistungsstarken Software für wissenschaftliche und technische Berechnungen und
  2. einem vollwertigen Textverarbeitungsprogramm.

Dadurch ist es möglich, Berechnungen und grafische Darstellungen mit erläuternden Textelementen oder importierten Objekten zu präsentationsreifen Dokumentationen zusammenzufügen.

Artikel lesen

John Napier (Neper)

* 1550 Merchiston Castle (bei Ediburgh)
† 4. April 1617 Merchiston Castle

JOHN NAPIER (bzw. latinisiert NEPER) ist neben dem Schweizer JOST BÜRGI einer der Erfinder der Logarithmen und schuf damit eine wesentliche Grundlage für die Entwicklung von Rechenhilfsmitteln.
Darüber hinaus veröffentlichte NAPIER Arbeiten über sphärische Trigonometrie.

Artikel lesen

Johann Balthasar Neumann

* 27. Januar 1687 Eger
† 19. August 1753 Würzburg

JOHANN BALTHASAR NEUMANN, deutscher Architekt und Baumeister des 18. Jahrhunderts, ist vor allem durch seine prächtigen Rokokobauten bekannt geworden.
Für seine Berechnungen entwickelte NEUMANN einen speziellen Proportionalwinkel.

Artikel lesen

John Louis von Neumann

* 28. Dezember 1903 Budapest
† 8. Februar 1957 Washington

JOHN VON NEUMANN gehört zu den bedeutendsten Mathematikern des 20. Jahrhunderts. Er ist Begründer der modernen Funktionalanalysis sowie der Spieltheorie.
Intensiv beschäftigte sich VON NEUMANN mit Fragen elektronischer Rechnersysteme, er gilt als Wegbereiter der sogenannten Computer-Architektur.

Artikel lesen

William Oughtred

* 5. März 1574 Eton (Buckinghamshire)
† 30. Juni 1660 Albury (Surrey)

Das Verdienst des englischen Pfarrers WILLIAM OUGHTRED (bzw. OWTRED) besteht vor allem in der Weiterentwicklung des logarithmischen Rechenstabes durch Einführung von zwei logarithmischen Skalen. Darüber hinaus veröffentlichte er eine Reihe mathematischer Schriften und erteilte in seinem Hause kostenlos Unterricht in Mathematik.

Artikel lesen

Proportionalzirkel

Proportionalzirkel und Proportionalwinkel waren vielseitig einsetzbare Rechengeräte des 17. und 18. Jahrhunderts. Berechnungen mit ihnen beruhten auf dem Rechnen mit Streckenlängen und Streckenverhältnissen. Ihre Entwicklung geht maßgeblich auf GALILEO GALILEI und sowie den Schweizer JOBST BÜRGI zurück.
Obwohl beide klar zu unterscheiden sind, werden die Begriffe Proportionalzirkel und Proportionalwinkel oft synonym verwendet.

Artikel lesen

Chronologie der Entwicklung von Rechenhilfsmitteln

Als älteste technische Hilfsmittel gelten die (als Abakus bekannten) Rechenbretter. Um 1620 wurde der Rechenstab auf Grundlage einer zweigeteilten logarithmischen Skala entwickelt.

Die ersten mechanischen Rechenmaschinen entstanden im 17. Jahrhundert. Auf CHARLES BABBAGE geht die Idee eines programmgesteuerten Rechners zurück, die technisch allerdings erst im Jahre 1936 durch KONRAD ZUSE realisiert werden konnte. Heute leisten Computer und elektronische Taschenrechner mehr als zehn Millionen Additionen pro Sekunde. Durch Nutzung von Computeralgebrasystemen (CAS) sind für die etwa ab 1990 massenhaft verbreiteten Personalcomputer weit über das „bloße“ Rechnen hinausgehende Möglichkeiten entstanden.

Artikel lesen

Der logarithmische Rechenstab

Der logarithmische Rechenstab war bis Mitte der 80er Jahre des 20. Jahrhunderts ein nicht wegzudenkendes Rechenhilfsmittel. Das zugrunde liegende Prinzip war bereits in den 20er Jahren des 17. Jahrhunderts von EDMUND GUNTER (1581 bis 1626) vorgestellt worden. Doch erst WILLIAM OUGHTRED (1574 bis 1660) ist die Entwicklung des „Rechenschiebers“ mit aneinander gleitenden (logarithmischen) Skalen zuzuschreiben.

Artikel lesen

Rechen mit dem logarithmischen Rechenstab

Der logarithmische Rechenstab in seiner Grundausführung wird vornehmlich zum Multiplizieren, Dividieren, Potenzieren, Radizieren und zum Rechnen mit Winkelfunktionswerten benutzt. Durch Anwenden der Logarithmengesetze werden die Rechenoperationen auf Addition bzw. Subtraktion von Strecken zurückgeführt.

Artikel lesen

Programme für grafikfähige Taschenrechner

Durch den Einsatz von grafikfähigen Taschenrechnern (GTR) lässt sich der Arbeits- und Zeitaufwand zum Lösen mathematischer Aufgaben wesentlich reduzieren. Die Möglichkeit ihrer Programmierung erweitert den Leistungsumfang beträchtlich. So können mithilfe zusätzlicher Programme verschiedene Problemstellungen „auf Knopfdruck“ bearbeitet werden, die ansonsten eine Vielzahl einzelner Rechenoperationen erforderlich machen.
Im Folgenden werden zu verschiedenen Problemen Programmlistings für grafikfähige Taschenrechner zum Nachnutzen angeboten.

Artikel lesen

Wilhelm Schickhardt

* 22. April 1592 Herrenberg
† 23. Oktober 1635 Tübingen

WILHELM SCHICKHARDT (bzw. SCHICKARD) war Professor (zunächst) für hebräische und orientalische Sprachen sowie (später) für Astronomie und Mathematik an der Universität Tübingen. Er erfand und baute um 1620 die erste mechanische Rechenmaschine.

Artikel lesen

Grafische Darstellungen mit einem Tabellenkalkulationsprogramm

Zu den hervorgehobenen Fähigkeiten einer Tabellenkalkulation gehören das Zeichnen von Diagrammen und so auch die grafische Darstellung von Funktionen.

Obwohl die unterschiedlichen Kalkulationsprogramme in den Grundfunktionen übereinstimmen, können sie sich in Bezeichnungen und auch in einzelnen Schrittfolgen durchaus voneinander unterscheiden. Die folgenden Beschreibungen beziehen sich deshalb auf die Tabellenkalkulation MS EXCEL.

Artikel lesen

Oberflächen von Tabellenkalkulationsprogrammen

Die Oberfläche eines Tabellenkalkulationsprogramms enthält als zentrales Element die Kalkulationstabelle. Um sie herum sind Bedienelemente, wie Menü- und Symbolleisten, Statuszeile und Rollbalken, angeordnet.
In die Zellen der Tabelle werden Zahlen, Daten, Texte, Formeln usw. eingegeben, und mit den Bedienelementen werden diese bearbeitet bzw. formatiert. Weitere Bedienelemente ermöglichen das Navigieren in umfangreichen Kalkulationstabellen, das Markieren und Formatieren von Tabellenteilen.

Artikel lesen

Grafikfähige Taschenrechner (GTR)

Grafikfähige Taschenrechner (GTR) erfüllen alle Funktionen der herkömmlichen elektronischen Taschenrechner, ihr großer Vorteil aber liegt in den vielfältigen grafischen Möglichkeiten dieser Rechner. So lassen sich Funktionen relativ einfach grafisch darstellen, analytische Untersuchungen an den Funktionsgraphen vornehmen (z.B. grafisches Bestimmen von Nullstellen, von Extrem- oder Schnittpunkten) und auch geometrische Figuren zeichnen.

Artikel lesen

Tischrechner

Der Begriff Tischrechner stellt eine Sammelbezeichnung für Sprossenrad-Rechenmaschinen dar, die (vor allem im 20. Jahrhundert) in unterschiedlicher Ausstattung für den Büro- und Laborbetrieb gebaut wurden.

Artikel lesen

Konrad Zuse

* 22. Juni 1910 Berlin
† 18. Dezember 1995 Hünfeld

KONRAD ZUSE entwickelte den ersten programmgesteuerten Rechenautomaten auf der Grundlage dualer Zahlendarstellung und gilt damit gewissermaßen als Schöpfer des Computers.

Artikel lesen

Bruchumwandlungen

Endliche Dezimalbrüche mit n Stellen nach dem Komma können als gemeine Brüche mit dem Nenner 10 n geschrieben werden.
Auch periodische Dezimalbrüche lassen sich in gemeine Brüche umwandeln.

Artikel lesen

Dezimalbrüche, Multiplikation

Sollen Dezimalbrüche multipliziert werden, lässt man das Komma zunächst unberücksichtigt und multipliziert die so entstehenden natürlichen Zahlen. Danach ist zu entscheiden, an welche Stelle des Resultates das Komma zu setzen ist.
Dabei gilt:
Hat der erste Faktor n Stellen nach dem Komma und der zweite Faktor m Stellen nach dem Komma, so hat das Produkt m + n Stellen nach dem Komma. Gegebenenfalls müssen Nullen ergänzt werden.

Artikel lesen

Ganze Zahlen, Historisches

Negative Zahlen galten lange Zeiten als suspekt. DIOPHANT VON ALEXANDRIA (um 250) beschäftigte sich mit zahlentheoretischen Fragen und dem Lösen von Gleichungen. Er wusste, dass es auch negative Lösungen gab, ließ diese aber nicht gelten. Im indischen Kulturkreis wurden negative Zahlen z. B. zum Beschreiben von Schulden angewandt. In Europa führten erst Mathematiker der Renaissance negative Zahlen im Zusammenhang mit dem Lösen von Gleichungen ein.

Seitennummerierung

  • Previous Page
  • Seite 31
  • Seite 32
  • Seite 33
  • Aktuelle Seite 34
  • Seite 35
  • Seite 36
  • Next Page

884 Suchergebnisse

Fächer
  • Mathematik (884)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025