Direkt zum Inhalt

11 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Bernoulli-Experimente

Ein Zufallsexperiment mit nur zwei möglichen Ergebnissen heißt BERNOULLI-Experiment. Die beiden Ergebnisse werden Erfolg bzw. Misserfolg genannt und häufig mit 1 bzw. 0 gekennzeichnet.
Mit einem BERNOULLI-Experiment können zufällige Vorgänge in vielen Lebensbereichen hinreichend beschrieben werden, da oftmals nur interessiert, ob ein bestimmtes Ereignis eingetreten ist oder nicht.

Artikel lesen

Kenngrößen der Binomialverteilung

Kenngrößen von Zufallsgrößen dienen deren quantitativer Charakterisierung. Wir betrachten im Folgenden binomialverteilte Zufallsgrößen.

Artikel lesen

Dreiecksverteilung (simpsonsche Verteilung)

Die Dreiecksverteilung wird in den meisten Lehrbüchern zur Stochastik kaum erwähnt bzw. nur am Rande behandelt. Das mag seinen Grund darin haben, dass diese Verteilung kein eigenständiges, aus der Praxis stammendes Anwendungsgebiet besitzt.
Die erste Abhandlung über diese Form der Verteilung von Zufallsgrößen in der Geschichte der Wahrscheinlichkeitstheorie stammt vom englischen Mathematiker THOMAS SIMPSON (1710 bis 1761), deshalb spricht man mitunter auch von der simpsonschen Verteilung.

Artikel lesen

Rechenregeln für Erwartungswerte

Für die Erwartungswerte von Zufallsgrößen gelten eine Reihe wichtiger und nützlicher Rechneregeln. Der Einfachheit halber sollen hier nur endliche Zufallsgrößen betrachtet werden.
Erwartungswerte können nach diesen Sätzen, nach Definitionen bzw. durch Simulationen bestimmt werden.

Artikel lesen

Normalverteilung (Gauß-Verteilung)

Auf der Suche nach „dem durchschnittlichen, dem normalen Menschen“ (l' homme moyen) ließ der auf vielen Gebieten tätige belgische Wissenschaftler LAMBERT ADOLPHE JACQUES QUÉTELET (1796 bis 1874) in den 30er Jahren des 19. Jahrhunderts biometrische Messungen in großem Umfang durchführen. In vielen Fällen wurde dabei seine Vorstellung bestätigt, dass die Häufigkeitsverteilung der gemessenen Werte (etwa zum Brustumfang) einer symmetrischen Glockenkurve entspricht. Das mag wohl auch ein wichtiger Grund dafür gewesen sein, dieser gleichsam als naturgemäß angesehenen Verteilung den Namen Normalverteilung zu geben, wobei diese Bezeichnung auch zu allerlei Fehldeutungen führte – vor allem dann, wenn alles nicht Normalverteilte als anormal eingestuft wurde.

Artikel lesen

Die tschebyschewsche Ungleichung

Abschätzungen für Wahrscheinlichkeiten spielen in der Stochastik eine wichtige Rolle, und zwar sowohl bei theoretischen Untersuchungen (Grenzwertsätze) als auch bei praktischen Anwendungen, wenn z.B. nach der noch vertretbaren (hinnehmbaren) Ausschusswahrscheinlichkeit einer Produktionsanlage gefragt wird. Eine der bekanntesten Wahrscheinlichkeitsabschätzungen ist die Ungleichung von TSCHEBYSCHEW.

Artikel lesen

Urnenmodelle

In der Wahrscheinlichkeitsrechnung spielt das Ziehen aus einer Urne mit verschiedenfarbigen, aber ansonsten gleichen Kugeln eine besondere Rolle. Es wird als ein gedankliches Modell zur Interpretation praktischer Aufgaben (insbesondere sogenannter Standardsituationen) genutzt.

Artikel lesen

Hypergeometrische Verteilung

Werden einer Urne mit genau N Kugeln (davon M weiße und N − M rote) genau n Kugeln „auf gut Glück“ entnommen und gibt die Zufallsgröße X die Anzahl der dabei herausgegriffenen weißen Kugeln an, so ist X hypergeometrisch verteilt, wenn die Kugeln ohne Zurücklegen entnommen werden, - im Unterschied zur Entnahme mit Zurücklegen.
Bevorzugtes Anwendungsgebiet der hypergeometrischen Verteilung ist die statistische Qualitätskontrolle.

Artikel lesen

Kenngrößen von Zufallsgrößen

Eine Zufallsgröße wird vollständig durch ihre Verteilungsfunktion beschrieben. Diese gibt an, welche Werte die Zufallsgröße annehmen kann und mit welchen Wahrscheinlichkeiten sie dies tut.
In der Praxis möchte man allerdings meist mit möglichst wenigen, aber typischen Angaben auskommen, denn oftmals reicht schon eine grobe Vorstellung von der Zufallsgröße aus. Es kommt hinzu, dass die Verteilungsfunktion mitunter gar nicht oder nur schwer bestimmbar ist.

Man sucht deshalb nach Kenngrößen (manchmal spricht man auch von Parametern), die einen hinreichenden Aufschluss und eine quantitative Charakterisierung einer Zufallsgröße ermöglichen. Dies leisten Kenngrößen wie Erwartungswert, Median und Modalwert sowie die Streuung (bzw. Varianz) der Zufallsgröße.
Zur Charakterisierung der Asymmetrie einer Zufallsgröße benutzt man darüber hinaus die Kenngröße Schiefe. Eine Definition dieser Kenngröße geht auf den Vater der mathematischen Statistik KARL PEARSON (1857 bis 1936) zurück.

Artikel lesen

Unabhängigkeit von Zufallsgrößen

Für die Definition der Unabhängigkeit von Zufallsgrößen werden die Ansätze und Erkenntnisse genutzt, die im Zusammenhang mit dem Begriff der stochastischen Unabhängigkeit von Ereignissen gewonnen wurden.
Die Unabhängigkeit von Zufallsgrößen wird als Unabhängigkeit von Ereignissen interpretiert.

Artikel lesen

Definition der Binomialverteilung

Wird ein BERNOULLI-Experiment n-mal durchgeführt, ohne dass sich die Erfolgswahrscheinlichkeit p ändert, so ist die zufällige Anzahl der Erfolge eine Zufallsgröße X, die die n + 1 Werte 0 ;    1 ;    2 ;    ... ;    n annehmen kann.
Nach der BERNOULLI-Formel gilt dann:

\(P({genau   k   Erfolge})=P(X=k)=(nk)⋅pk⋅(1−p)n−k=:Bn; p({k})\)

Daraus folgt die Definition der Binomialverteilung.

11 Suchergebnisse

Fächer
  • Mathematik (11)
Klassen
  • Oberstufe/Abitur (11)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025