Direkt zum Inhalt

313 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Korrelation und lineare Regression

Die grafische Darstellung von Wertepaaren ( x i ;   y i ) zweier Größen X und Y führt häufig zu einer Menge von Punkten, die nicht ohne Weiteres einer Funktion bzw. einer Kurve zugeordnet werden können.
Es stellt sich die Frage, ob zwischen den Größen eine Abhängigkeit besteht.
Oftmals ist in solchen Fällen eine Funktion gesucht, deren Graph möglichst nahe an allen Punkten liegt.
Dies führt zur Definition der Korrelation sowie der Regression.

Artikel lesen

Heisenbergsche Unbestimmtheitsrelation

An der Entwicklung und der Interpretation der Quantenphysik waren viele bedeutende Physiker beteiligt. Entscheidende Schritte wurden in den zwanziger Jahren des 20. Jahrhundert gegangen. 1927 veröffentlichte NIELS BOHR sein Komplementaritätsprinzip. Im gleichen Jahr formulierte WERNER HEISENBERG die Unbestimmtheitsrelation. Sie besagt, dass der Ort und der Impuls eines Quantenobjektes nicht gleichzeitig genau bestimmt werden können und wird häufig folgender mathematischen Beziehung angegeben:
Δ x ⋅ Δ p ≥ h 4 π

Das ist eine, aber nicht die einzige Möglichkeit, die heisenbergsche Unbestimmtheitsrelation zu formulieren.

Artikel lesen

Bohrsches Atommodell

Der dänische Physiker NIELS BOHR (1885-1962) entwickelte 1913 das von dem britischen Physiker ERNEST RUTHERFORD (1871-1937) im Jahre 1911 angegebene Atommodell weiter, wobei er das Kern-Hülle-Modell mit Quantenvorstellungen verband. Bohr formulierte für sein Atommodell, das man als bohrsches Atommodell bezeichnet, einige grundlegende Postulate. Ein Vorteil dieses Atommodells war, dass man mit ihm die Emission und Absorption von Strahlung erklären konnte. Für Wasserstoff konnten auch die Spektrallinien berechnet werden. Entscheidende Nachteile waren, dass es bei anderen Atomen als Wasserstoff versagt und im Widerspruch zu quantenphysikalischen Erkenntnissen von der Vorstellung bestimmter Bahnen der Elektronen ausgeht.

Artikel lesen

Größen zur Beschreibung radioaktiver Strahlung

Radioaktive Strahlung kann durch verschiedene physikalische Größen beschrieben werden, wobei sich die Größen teilweise auf die Strahlungsquelle und teilweise auf die Körper beziehen, die radioaktiver Strahlung ausgesetzt sind. Die wichtigsten Größen sind die Aktivität, die Äquivalentdosis, die Energiedosis, die Energiedosisleistung und die Ionendosis.

Artikel lesen

Grundexperimente zur Atomphysik

Für die Entstehung der Atomphysik und die Durchsetzung der Atomhypothese spielten eine Reihe von grundlegenden Experimenten und Beobachtungen eine herausragende Rolle. Dazu gehören u.a. die Streuversuche von PHILIPP LENARD und ERNEST RUTHERFORD, aber auch die spektroskopischen Untersuchungen, die in der zweiten Hälfte des 19. Jahrhunderts von verschiedenen Physikern durchgeführt und interpretiert wurden. In dem Beitrag sind ausgewählte Experimente dargestellt und in ihrer Bedeutung für die Entwicklung der Atomphysik charakterisiert.

Artikel lesen

Das Tröpfchenmodell

Die Atommodelle von E. RUTHERFORD (1911) und N. BOHR (1913) waren Modelle für die Atomhülle. Vom Atomkern war in dieser Zeit lediglich bekannt, dass in ihm weitgehend die Masse des Atoms konzentriert ist und er eine positive Ladung trägt. Genauere Vorstellungen über seine Struktur entwickelten sich erst ab den dreißiger Jahren des 20. Jahrhundert im Zusammenhang mit dem experimentellen Nachweis des Neutrons durch J. CHADWICK (1932) und den weiteren Untersuchungen zu Kernumwandlungen, die u. a. von E. FERMI, F. JOLIOT-CURIE und O. HAHN durchgeführt wurden. Als besonders tragfähig erwiesen sich das Tröpfchenmodell und das Potenzialtopfmodell.

Artikel lesen

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Artikel lesen

Äquivalenz von Masse und Energie

ALBERT EINSTEIN formulierte in seiner berühmten Arbeit zur speziellen Relativitätstheorie im Jahre 1905: „Die Masse eines Körpers ist ein Maß für dessen Energiegehalt“. Er stellte fest, dass Masse und Energie äquivalente Größen sind und zwischen diesen Größen der fundamentale Zusammenhang E = m ⋅ c 2 existiert. Diese Gleichung ist die Grundlage für das Verständnis der Energiefreisetzung durch Kernspaltung und Kernfusion sowie vieler weiterer physikalischer Prozesse.

Artikel lesen

Akustischer und optischer DOPPLER-Effekt

Der österreichische Physiker CHRISTIAN DOPPLER (1803-1853) entdeckte 1842, dass zwischen der von einem Beobachter wahrgenommenen Tonfrequenz und der Bewegung einer Schallquelle ein Zusammenhang besteht. Dieser Effekt wird als akustischer DOPPLER-Effekt bezeichnet.
Ein analoger Effekt tritt bei Licht auf. Er wird optischer oder relativistischer DOPPLER-Effekt genannt.

Artikel lesen

Erhaltungssätze in der speziellen Relativitätstheorie

In der klassischen Physik gilt für abgeschlossene Systeme neben dem Gesetz von der Erhaltung der Masse der Energieerhaltungssatz und der Impulserhaltungssatz.
Aus relativistischer Sicht ergibt sich: Aufgrund der Äquivalenz von Masse und Energie umfasst der Energieerhaltungssatz auch das Gesetz von der Erhaltung der Masse. Auch Impulserhaltungssatz und Energieerhaltungssatz sind miteinander verknüpft.

Artikel lesen

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist. Längenkontraktion bedeutet:
In seinem Ruhesystem hat ein Körper seine größte Länge, die Eigenlänge. In einem dazu bewegten System ist die Länge um den Faktor 1 / k = 1 − v 2 / c 2 (Kehrwert des LORENTZ-Faktors) geringer.

Artikel lesen

LORENTZ-Transformation

Im Zusammenhang mit der Entwicklung seiner Elektronentheorie beschäftigte sich der niederländische Physiker HENDRIK ANTOON LORENTZ auch mit der Elektrodynamik bewegter Körper und mit der Deutung des MICHELSON-MORLEY-Experiments. Er entwickelte 1895 auf der Grundlage der klassischen Vorstellungen Gleichungen, die es ermöglichten, die räumlichen und zeitlichen Koordinaten von einem Inertialsystem in ein anderes umzurechnen. Diese Gleichungen werden als LORENTZ-Transformationsgleichungen oder als LORENTZ-Transformation bezeichnet. Die richtige physikalische Deutung erhielten sie 10 Jahre später durch ALBERT EINSTEIN in seiner speziellen Relativitätstheorie.

Artikel lesen

Ruheenergie und Gesamtenergie

In der klassischen Physik setzt sich die Energie eines Körpers additiv aus den Energieformen zusammen, die er hat. Masse und Energie sind voneinander unabhängige Größen.
In relativistischer Betrachtungsweise spielt wegen der Äquivalenz von Masse und Energie die Masse des Körpers für die ihm zuzuordnende Energie eine wichtige Rolle. Dabei ist zwischen seiner Ruheenergie und seiner Gesamtenergie zu unterscheiden.

Artikel lesen

Zeitdilatation

In der klassischen Physik wird von einer absoluten Zeit ausgegangen, die überall gleichmäßig verläuft. In der speziellen Relativitätstheorie dagegen ist der Zeitbegriff zu relativieren. Die Zeit ist nicht absolut, sondern es gilt vielmehr: Eine bewegte Uhr geht langsamer als eine ruhende Uhr. Ein physikalischer Vorgang dauert in seinem Ruhesystem nicht so lange wie der gleiche Vorgang in einem dazu bewegten System. Diese Erscheinung wird als Zeitdilatation bezeichnet.

Artikel lesen

Zwillingsparadoxon

Die Relativität der Zeitmessung wird häufig am Beispiel von Zwillingen diskutiert, die sich in zueinander bewegten Inertialsystemen befinden und wegen der Zeitdilatation unterschiedlich schnell altern. Bezeichnet wird diese Erscheinung als Zwillingsparadoxon.

Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Hydraulische Anlagen

Hydraulische und pneumatische Anlagen sind kraftumformende Einrichtungen, bei denen die gleichmäßige und allseitige Ausbreitung des Druckes in Flüssigkeiten bzw. in Gasen genutzt wird. Dabei werden durch Kolbendruck Kräfte übertragen sowie deren Betrag oder deren Richtung geändert.
Beispiele für solche Anlagen sind Hebebühnen, hydraulische Pressen, Wagenheber, Bremsen oder Türöffner bei Bussen und Schienenfahrzeugen.

Artikel lesen

Impulserhaltungssatz

Für den Impuls gilt wie für die Energie und den Drehimpuls ein Erhaltungssatz, der als Impulserhaltungssatz oder als Gesetz von der Erhaltung des Impulses bezeichnet wird. Er lautet:

In einem kräftemäßig abgeschlossenen System bleibt der Gesamtimpuls erhalten. Es gilt:
p → = ∑ i = 1 n p → i = ∑ i = 1 n m i ⋅ v → i = konstant
 

Artikel lesen

Keplersche Gesetze

Der Astronom JOHANNES KEPLER (1571-1630) entdeckte die grundlegenden Gesetze der Planetenbewegung. Die nach ihm benannten drei keplerschen Gesetze machen Aussagen über die Bahnform von Planeten und die Stellung der Sonne (1. keplersches Gesetz), die Bewegung von Planeten längs ihrer Bahn (2. keplersches Gesetz) sowie den Zusammenhang zwischen der Größe der Bahn und der Zeit für einen Umlauf um die Sonne (3. keplersches Gesetz).

Artikel lesen

Kosmische Geschwindigkeiten

Die Geschwindigkeiten, die ein Körper mindestens erreichen muss, um von einem Himmelskörper aus auf eine Bahn um diesem Himmelskörper zu gelangen oder um diesen Himmelskörper zu verlassen, bezeichnet man als kosmische Geschwindigkeiten. Unterschieden wird zwischen

  • der 1. kosmischen Geschwindigkeit (minimale Keisbahngeschwindigkeit),
  • der 2. kosmischen Geschwindigkeit (Fluchtgeschwindigkeit) und
  • der 3. kosmischen Geschwindigkeit.
Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Seitennummerierung

  • Previous Page
  • Seite 8
  • Seite 9
  • Aktuelle Seite 10
  • Seite 11
  • Seite 12
  • Seite 13
  • Next Page

313 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (43)
  • Mathematik (129)
  • Physik (139)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025