Direkt zum Inhalt

22 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

James Prescott Joule

* 1818 Salford bei Manchester
† 1889 Sale bei London

Er war ein englischer Naturwissenschaftler, maß das mechanische Wärmeäquivalent und legte damit wesentliche Grundlagen für die Entdeckung des Gesetzes von der Erhaltung der Energie.
Nach ihm ist die heute gebräuchliche Einheit der Energie - das Joule (1 J) benannt.

Artikel lesen

Energie und Energieerhaltung

Energie ist die Fähigkeit, mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszustrahlen.

Formelzeichen:
Einheit:
E
ein Joule (1 J)


Die Energie ist eine Zustandsgröße und in abgeschlossenen Systemen eine Erhaltungsgröße. Für sie gilt der Energieerhaltuntgssatz.

Artikel lesen

Sublimieren und Resublimieren

Als Sublimieren bezeichnet man den Übergang vom festen in den gasförmigen Aggregatzustand, als Resublimieren den umgekehrten Übergang vom gasförmigen in den festen Aggregatzustand. Im Unterschied zu anderen Aggregatzustandsänderungen vollziehen sich diese Umwandlungen in einem Temperaturbereich. Es sind damit Phasenübergänge 2. Art. Wie andere Aggregatzustandsänderungen ist zum Sublimieren Wärme erforderlich, beim Resublimieren wird Wärme freigesetzt.

Artikel lesen

Thermodynamische Systeme

Thermodynamische Systeme sind physikalische Systeme, in denen thermodynamische Erscheinungen und Vorgänge ablaufen. Abgegrenzt sind sie von der Umgebung durch eine Systemgrenze, die festgelegt werden muss. Wie andere physikalische Systeme kann auch ein thermodynamisches System abgeschlossen, geschlossen oder offen sein. Charakterisiert wird der Zustand eines Systems mit Zustandsgrößen, z.B. der Temperatur, dem Druck oder dem Volumen. Die Beschreibung der Vorgänge zwischen Körpern im System und auch zwischen dem System der seiner Umgebung erfolgt durch Prozessgrößen, z.B. der Wärme und der Arbeit.

Artikel lesen

Thermografie

Die Thermografie ist ein Verfahren, bei dem mithilfe von speziellen Kameras die Wärmestrahlung sichtbar gemacht wird, die von Körpern bzw. von technischen Objekten ausgeht. Da die Intensität und Zusammensetzung der Wärmestrahlung temperaturabhängig ist, ermöglicht eine thermografische Aufnahme die Temperaturverteilung bei dem betreffenden Körper zu erkennen und daraus Folgerungen abzuleiten.

Artikel lesen

Die Wärme

Die Wärme ist eine relativ komplizierte physikalische Größe, deren Wesen erst im Laufe vieler Jahrzehnte geklärt werden konnte. Heute kann man klar definieren: Die Wärme gibt an, wie viel thermische Energie von einem Körper auf einen anderen Körper übertragen wird.

 Formelzeichen:Q
 Einheit:ein Joule (1 J)

Die Wärme ist wie die mechanische Arbeit eine Prozessgröße, da sie den Prozess der Energieübertragung zwischen Körpern beschreibt.

Artikel lesen

Wissenstest, Hauptsätze der Thermodynamik

In den Hauptsätzen der Thermodynamik sind grundlegende Zusammenhänge aus diesem Teilbereich der Physik erfasst. Der 1. Hauptsatz enthält den Zusammenhang zwischen der Änderung der inneren Energie, der Wärme und der Arbeit. Er ist Grundlage für die Wirkungsweise von Wärmekraftmaschinen. Die Vorgänge bei einer solchen Maschine lassen sich als Kreisprozess beschreiben. Der zweite Hauptsatz beinhaltet eine Aussage über in der Natur mögliche Prozesse.

Im Test können zu prüfen, ob Sie wichtige Zusammenhänge verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Hauptsätze der Thermodynamik".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Wissenstest, Thermisches Verhalten von Körpern und Stoffen


Zum thermischen Verhalten von Körpern und Stoffen gehören die Längen- und Volumenänderung bei Temperaturänderung, die verschiedenen Aggregatzustandsänderungen sowie das Verhalten von Gasen, das unter Nutzung des Modells ideales Gas beschrieben wird. Im Test wird geprüft, inwieweit Grundkenntnisse über die genannten Inhalte vorhanden sind.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Thermisches Verhalten von Körpern und Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Zweiter Hauptsatz der Thermodynamik

Der zweite Hauptsatz der Thermodynamik, auch 2. Hauptsatz der Wärmelehre genannt, macht eine Aussage über die Richtung der Energieübertragung bei Vorgängen in Natur und Technik: Wärme geht niemals von selbst von einem Körper niederer Temperatur zu einem Körper höherer Temperatur über. Dieses Gesetz wurde von dem deutschen Physiker ROBERT CLAUSIUS (1822-1888) entdeckt. Für den zweiten Hauptsatz der Thermodynamik gibt es eine Reihe von gleichwertigen Formulierungen. In einer sehr kurzen Form lautet er:
Ein Perpetuum mobile 2. Art ist unmöglich.

Artikel lesen

Michail Wassiljewitsch Lomonossow

* 19.11.1711 in Michaninskaja (heutiges Lomonossow)
† 15.04.1765 in St. Petersburg

LOMONOSSOW war ein russischer Gelehrter und Schriftsteller. Er studierte Philosophie, Mathematik, Chemie und Mineralogie. Ab 1745 war er in Lomonossow Professor für Chemie in St. Petersburg. Er vertrat die These, dass Wissenschaft und Glaube getrennt werden müssten. LOMONOSSOW war ein Universalgenie. Er befasste sich mit Metallurgie, Geologie, Meteorologie, Geografie sowie Kartografie und erneuerte auch die russische Schriftsprache.

Das Gesetz von der Erhaltung der Masse gründet sich auf die wissenschaftlichen Leistungen von M. W. LOMONOSSOW.

Artikel lesen

Rudolf Clausius

* 02.02.1822 in Köslin
† 24.08.1888 in Bonn

Er war ein deutscher Physiker, der als Professor in Zürich, Würzburg und Bonn tätig war. CLAUSIUS leistete wesentliche Beiträge zur Entwicklung der Thermodynamik. Insbesondere formulierte er als Erster den 2. Hauptsatz der Thermodynamik.

Artikel lesen

James Prescott Joule

* 1818 Salford bei Manchester
† 1889 Sale bei London

Er war ein englischer Physiker, maß das mechanische Wärmeäquivalent und legte damit wesentliche Grundlagen für die Entdeckung des Gesetzes von der Erhaltung der Energie.
Nach ihm ist die heute gebräuchliche Einheit der Energie – das Joule (1 J) benannt.

Artikel lesen

Zustands- und Prozessgrößen

Größen kann man danach unterscheiden, ob sie den Zustand eines Körpers oder Systems bzw. ob sie einen Vorgang oder Prozess kennzeichnen. Solche Größen, die den Zustand eines Körpers oder eines Systems kennzeichnen, bezeichnet man als Zustandsgrößen. Beispiele für Zustandsgrößen sind die Energie E eines Körpers, die Temperatur T in einem Raum oder der Druck p im Zylinder eines Verbrennungsmotors.

Solche Größen, die einen Vorgang oder einen Prozess kennzeichnen, nennt man Prozessgrößen. Beispiele für solche Prozessgrößen sind die Wärme Q oder die Arbeit W. Die Wärme beschreibt den Vorgang der Energieübertragung zwischen Körpern.

Artikel lesen

Physikalische Begriffe

Um Körper, Stoffe, Vorgänge oder Zusammenhänge beschreiben, vergleichen und charakterisieren zu können, nutzt man physikalische Begriffe. Allgemein versteht man unter einem Begriff eine gedankliche Widerspiegelung einer Klasse von Objekten (Körper, Stoffe, Vorgänge usw.) aufgrund ihrer gemeinsamen Merkmale.
Damit jeder unter einem Begriff ein- und dasselbe versteht, werden Begriffe in der Physik eindeutig definiert. Dadurch unterscheidet sich die Fachsprache auch von der Umgangssprache

Artikel lesen

James Prescott Joule

* 24.12.1818 Salford bei Manchester
† 11.10.1889 Sale bei London

Er war ein englischer Physiker, maß das mechanische Wärmeäquivalent und legte damit wesentliche Grundlagen für die Entdeckung des Gesetzes von der Erhaltung der Energie.
Nach ihm ist die heute gebräuchliche Einheit der Energie - das Joule (1 J) benannt.

Artikel lesen

Rudolf Clausius

* 02.02.1822 in Köslin
† 24.08.1888 in Bonn

Er war ein deutscher Physiker, der als Professor in Zürich, Würzburg und Bonn tätig war. CLAUSIUS leistete wesentliche Beiträge zur Entwicklung der Thermodynamik. Insbesondere formulierte er als Erster den 2. Hauptsatz der Wärmelehre.

Artikel lesen

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist der Energieerhaltungssatz, formuliert für thermodynamische Prozesse. Die heute bekannte mathematische Formulierung des 1. Hauptsatzes der Thermodynamik stammt von RUDOLF CLAUSIUS und wurde von ihm um 1850 so formuliert:

Die einem thermodynamischen System zugeführte Wärme ist gleich der Summe aus der Änderung der inneren Energie des Systems und der von ihm verrichteten mechanischen Arbeit.

Δ U = W + Q Δ U Änderung der inneren Energie des Systems W vom System oder am System verrrichtet mechanische Arbeit (Volumenarbeit) Q vom System aufgenommene oder abgegebene Wärme

Eine andere übliche Formulierung des 1. Hauptsatzes der Thermodynamik lautet:
Es ist unmöglich, eine Perpetuum mobile 1. Art zu konstruieren.

Artikel lesen

Grundgleichung der Wärmelehre

Unter der Bedingung, dass keine Änderung des Aggregatzustandes erfolgt, gilt für die einem Körper zugeführte oder von ihm abgegebene Wärme:

Q = c ⋅ m ⋅ Δ ϑ oder Q = c ⋅ m ⋅ Δ T c spezifische Wärmekapazität m Masse des Körpers Δ ϑ ,   Δ T Temperaturänderung des Körpers

Die Stoffkonstante spezifische Wärmekapazität, insbesondere die von Wasser, hat erhebliche Bedeutung für Natur und Technik, da in Wasser eine erhebliche Wärme gespeichert und mit ihm transportiert werden kann.

Artikel lesen

Isobare Zustandsänderungen

Bei einer isobaren Zustandsänderung eines Gases bleibt der Druck konstant. Die Zustandskurve im p-V-Diagramm ist eine Parallele zur V-Achse. Ein solcher Prozess kann realisiert werden, wenn dem Gas eine Wärme Q zugeführt wird. Damit dabei der Druck konstant bleibt, muss von dem Gas gleichzeitig Volumenarbeit verrichtet werden. Die zugeführte Wärme Q erzeugt bei einer isobaren Zustandsänderung eine Änderung der inneren Energie und des Volumens. Nach dem 1. Hauptsatz der Thermodynamik ergibt sich die Bilanz:

Q = Δ U − W

Bei Verwendung des Modells des idealen Gases erhöht die zugeführte Wärme Q die innere Energie U des Gases und verrichtet Volumenarbeit.

Artikel lesen

Isotherme Zustandsänderungen

Nach dem 1. Hauptsatz der Thermodynamik kann eine isotherme Zustandsänderung, also eine Zustandsänderung bei konstanter Temperatur, durch folgende Prozesse realisiert werden:

  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet Volumenarbeit (isotherme Expansion).
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme wird abgegeben (isotherme Kompression).

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) entspricht der Fläche unterhalb der Isobare im p-V- Diagramm. Sie kann durch Auszählen der Fläche oder durch Integration berechnet werden. Bei Verwendung des Modells ideales Gas beträgt die Volumenarbeit bei isothermer Expansion:

W = − N ⋅ k ⋅ T ⋅ ln V 2 V 1

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Artikel lesen

Nicolas Léonard Sadi Carnot

* 01.06.1796 Paris
† 24.08.1832 Paris

Er war ein französischer Ingenieur und Physiker. Nach seinem Studium an der École Polytechnique diente er in der Armee NAPOLEONs als Ingenieuroffizier. Seine theoretischen Untersuchungen zur Wirkungsweise der Dampfmaschine hatten das Ziel, den Wirkungsgrad zu erhöhen und die Einführung der Dampfmaschinen in Frankreich zu fördern. Mit seiner berühmten Schrift „Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen“ begründete er die technische Thermodynamik.
Nach ihm ist der thermodynamische Kreisprozess benannt, der aus je zwei isothermen und adiabatischen Zustandsänderungen besteht und der den höchstmöglichen Wirkungsgrad bei Kreisprozessen hat.

Artikel lesen

Grundlagen der Baustatik: Statik, Lasten, Spannungsformen

Statik und Festigkeitslehre bilden die wissenschaftlichen Grundlagen der Bautechnik.

22 Suchergebnisse

Fächer
  • Biologie (1)
  • Chemie (4)
  • Kunst (1)
  • Physik (16)
Klassen
  • 5. Klasse (27)
  • 6. Klasse (27)
  • 7. Klasse (27)
  • 8. Klasse (27)
  • 9. Klasse (27)
  • 10. Klasse (27)
  • Oberstufe/Abitur (22)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025