Direkt zum Inhalt

9 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Geraden am Kreis


Geraden und Kreise können verschiedene Lagen zueinander haben:

  • Eine Gerade, die den Kreis in zwei Punkten schneidet, heißt Sekante (Schneidende). Eine Sekante, die durch den Mittelpunkt des Kreises verläuft, nennt man Zentrale.
  • Die Strecke zwischen den Punkten A und B ist eine Sehne des Kreises. Die längste Sehne im Kreis ist der Durchmesser d.
  • Eine Gerade, die den Kreis in einem Punkt berührt, heißt Tangente (Berührende).
  • Eine Gerade, die den Kreis in keinem Punkt schneidet, heißt Passante (Vorbeigehende).
Artikel lesen

Pol und Polare am Kreis

Mithilfe des Kreises ist eine eineindeutige Abbildung (Zuordnung) zwischen der Menge aller Punkte (außer dem Kreismittelpunkt M) und der Menge aller Geraden (außer den Geraden durch M) definiert. Diese wird Polarität am Kreis genannt.

Artikel lesen

Kugel und Gerade

Für die Lage einer Kugel bezüglich einer Geraden gibt es die folgenden Möglichkeiten:

  1. Kugel und Gerade haben keinen Punkt gemeinsam (Fall 1);
  2. Kugel und Gerade haben genau einen Punkt gemeinsam (Fall 2);
  3. Kugel und Gerade haben genau zwei Punkte gemeinsam (Fall 3)

Im Fall 1 nennt man die Gerade eine Passante, im Fall 2 eine Tangente und im Fall 3 eine Sekante.

Artikel lesen

Partielle Ableitungen

Für eine Funktion mit einer Gleichung y = f ( x ) , also für eine Funktion mit genau einer unabhängigen Variablen x, ist die erste Ableitung y ' = f ' ( x 0 ) an einer Stelle x 0 erklärt durch den Grenzwert des Differenzenquotienten an dieser Stelle:
f ' ( x 0 ) = lim h   →   0 f ( x 0 + h ) − f ( x 0 ) h

Interpretiert man diesen Grenzwert geometrisch, so gibt er den Anstieg der Tangente an den Graphen von f im Punkte P 0 ( x 0 ;     f ( x 0 ) ) an.

Es sei nun z = f ( x ,     y ) die Gleichung einer Funktion f mit zwei unabhängigen Variablen x und y. Betrachtet man diese Funktion für ein konstantes y = y 0 , so erhält man eine Funktion z = f ( x ,     y 0 ) mit nunmehr nur einer unabhängigen Variablen x, für die man wie oben angegeben den Grenzwert des Differenzenquotienten an einer Stelle x 0 aufstellen kann. Existiert dieser Grenzwert, so nennt man ihn die partielle Ableitung erster Ordnung der Ausgangsfunktion z = f ( x ,     y ) nach x an der Stelle ( x 0 ;     y 0 ) und schreibt:
f x ( x 0 ;     y 0 ) = lim h   →   0 f ( x 0 + h ,     y 0 ) − f ( x 0 ,     y 0 ) h

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Differenzierbarkeit von Funktionen

Die Definitionen von Differenzierbarkeit und Stetigkeit führen zu der Folgerung, eine Funktion f kann an einer Stelle x 0 stetig, aber nicht differenzierbar sein.
Ist f in x 0 allerdings differenzierbar, dann ist sie in x 0 auch stetig.

Artikel lesen

Grafisches Differenzieren

Die Ableitung einer Funktion f an einer Stelle x 0 gibt bekanntermaßen den Anstieg der Tangente an den Graphen der Funktion im Punkt P 0 ( x 0 ;   f ( x 0 ) ) an.
Ebenso spricht man vom Anstieg des Graphen im Punkt P 0 .
Im Folgenden wird ein Verfahren zur Bestimmung der Ableitung an einer Stelle x 0 mittels zeichnerischen oder grafischen Differenzierens vorgestellt.

Artikel lesen

Tangentenproblem

In der historischen Entwicklung der Differenzialrechnung spielte das sogenannte Tangentenproblem eine große Rolle.

Artikel lesen

Differenzialrechnung, Grundlagen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Grundlagen der Differenzialrechnung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

9 Suchergebnisse

Fächer
  • Mathematik (9)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (8)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025