Direkt zum Inhalt

594 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Sieden und Kondensieren

Als Sieden bezeichnet man den Übergang vom flüssigen in den gasförmigen Aggregatzustand, als Kondensieren den umgekehrten Übergang vom gasförmigen in den flüssigen Aggregatzustand.

Dabei gilt:

  • Siedetemperatur und Kondensationstemperatur sind gleich groß. Sie hängen vom jeweiligen Stoff und vom Druck ab.
  • Verdampfungswärme und Kondensationswärme sind für einen bestimmten Stoff ebenfalls gleich groß.
Artikel lesen

Spezielle Zustandsänderungen

Aus der allgemeinen Zustandsgleichung für das ideale Gas kann man Gleichungen für den Fall ableiten, dass eine der drei Größen konstant ist. Mit p = konstant ergeben sich Gleichungen für die isobare Zustandsänderung, mit V = konstant für die isochore Zustandsänderung und mit T = konstant für die isotherme Zustandsänderung. Die Gleichungen für diese speziellen Zustandsänderungen wurde früher gefunden als der allgemeine Fall. Nach den Wissenschaftlern, die sie entdeckten, nennt man diese Gesetze auch das Gesetz von GAY-LUSSAC, das Gesetz von AMONTONS und das Gesetz von BOYLE und MARIOTTE.

Artikel lesen

Robert Stirling

* 25.10.1790 in Cloag, Schottland
† 06.06.1878 in Galston, Schottland

ROBERT STIRLING war ein schottischer Pfarrer, der zusammen mit seinem Bruder JAMES, einem Mechaniker, mehrere Maschinen entwickelte und patentieren ließ. 1816 meldete er mit 26 Jahren sein erstes Patent an. Die Grundidee bestand darin, den heißen Wasserdampf der Dampfmaschine durch Luft als Arbeitsmittel zu ersetzen. Zwei Jahre später baute er den ersten Heißluftmotor, die als Antrieb für eine Wasserpumpe eingesetzt wurde und eine Leistung von 2 PS (1,5 kW) lieferte.
Die Entwicklung des Stirling-Motors erfolgte ohne Kenntnis der thermodynamischen Grundlagen und ist eine geniale Ingenieurleistung.
Mitte des 19. Jahrhunderts erreichten Heißluftmotoren einen höheren Wirkungsgrad als Dampfmaschinen und wurden in größerer Zahl als Industriemotoren verwendet. Eine Verbreitung von Heißluftmotoren wurde vor allem durch das Fehlen geeigneter Materialien zur Herstellung der Zylinderköpfe und den Abdichtungen zwischen Gasraum und Getriebeteil verhindert.

Artikel lesen

Stirlingscher Kreisprozess

Der stirlingsche Kreisprozess, bestehend aus je zwei isothermen und isochoren Zustandsänderungen, repräsentiert die „Takte“ eines ideal arbeitenden Heißluftmotors. Dabei wird das Antriebsmittel „Luft“ als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

  1. Durch Aufnahme einer bestimmten Wärme aus einem heißen Wärmespeicher erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
  2. Durch eine isochore Abkühlung wird die Temperatur verringert. Dabei wird Wärme abgegeben.
  3. Takt: Für die isobare Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme Δ wird an einen kalten Wärmespeicher abgegeben.
  4. Takt: Durch eine isochore Erwärmung wird nun die Temperatur erhöht und damit der Ausgangszustand wieder erreicht. Dazu wird die Wärme zugeführt.

Die Differenz aus verrichteter und zugeführten Arbeit kann von der Maschine nach aßen abgegeben werden.

Artikel lesen

Strahlungsgesetz von Planck

Das von dem deutschen Physiker MAX PLANCK (1858-1947) im Jahre 1900 vorgestellte Strahlungsgesetz beantwortet die Frage, welchen Anteil die einzelnen Wellenlängen zur Energie der gesamten Strahlung eines schwarzen Körpers beitragen. Anschaulich lässt sich der Intensitätsverlauf in Abhängigkeit von der Wellenlänge in einem Diagramm darstellen.

Artikel lesen

Strahlungsgesetz von Stefan und Boltzmann

Bei Untersuchungen zur Lichtausbeute von Lichtquellen entdeckte der österreichische Physiker JOSEPH STEFAN (1835-1893) im Jahre 1879 einen Zusammenhang, der von dem deutschen Physiker LUDWIG BOLTZMANN (1844-1906) theoretisch begründet wurde und deshalb heute die Bezeichnung Strahlungsgesetz von STEFAN und BOLTZMANN oder stefan-boltzmannsches Gesetz trägt:

Die Strahlungsleistung eines Körpers hängt nur von seiner Temperatur und seiner Oberfläche ab. Es gilt:

P s = a ⋅ A ⋅ T 4 a = 5,67 ⋅ 10 − 8 W m 2 ⋅ K 4 (STEFAN-BOLTZMANN-Konstante) A Fläche , von der Strahlung ausgeht T Temperatur des strahlenden Körpers in Kelvin

Artikel lesen

Strahlungsgesetz von Wien (WIENsches Verschiebungsgesetz)

Glühende Oberflächen senden eine aus vielen Wellenlängen zusammengesetzte elektromagnetische Strahlung aus. Der deutsche Physiker WILHELM WIEN (1864-1928) fand 1896 einen Zusammenhang, der nach ihm als wiensches Verschiebungsgesetz bezeichnet wird:
Die Wellenlänge der intensivsten Strahlung hängt nur von der Temperatur des schwarzen Körpers ab. Es gilt:

λ max = b T λ max Wellenlänge der intensivsten Strahlung b = 2,898 ⋅ 10 − 3 m ⋅ K (wiensche Konstante) T Temperatur in Kelvin

Artikel lesen

Sublimieren und Resublimieren

Als Sublimieren bezeichnet man den Übergang vom festen in den gasförmigen Aggregatzustand, als Resublimieren den umgekehrten Übergang vom gasförmigen in den festen Aggregatzustand. Im Unterschied zu anderen Aggregatzustandsänderungen vollziehen sich diese Umwandlungen in einem Temperaturbereich. Es sind damit Phasenübergänge 2. Art. Wie andere Aggregatzustandsänderungen ist zum Sublimieren Wärme erforderlich, beim Resublimieren wird Wärme freigesetzt.

Artikel lesen

Temperaturstrahlung

Unter Temperaturstrahlung versteht man die elektromagnetische Strahlung, die ein Körper aufgrund seiner Temperatur an seine Umgebung abgibt. Hauptbereiche der Temperaturstrahlung sind das infrarote, das sichtbare und das ultraviolette Licht.
Bei ihrer Ausbreitung im Raum wird Temperaturstrahlung teilweise an Körpern reflektiert, teilweise durch Körper absorbiert und geht teilweise auch durch Körper hindurch.

Artikel lesen

Temperatur und Teilchenbewegung

Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen), die sich unterschiedlich schnell bewegen. Die Heftigkeit der Teilchenbewegung hängt vom Aggregatzustand und von der Temperatur ab. Dabei gilt:
Je höher die Temperatur eines Körpers ist, desto heftiger bewegen sich die Teilchen des Stoffes, aus dem der Körper besteht. Die quantitativen Zusammenhänge erhält man durch die Verknüpfung der Grundgleichung der kinetischen Gastheorie mit der Zustandsgleichung des idealen Gases. Zwischen der Temperatur des idealen Gases und seiner kinetischen Energie bzw. Geschwindigkeit bestehen folgende Zusammenhänge:

E ¯ k i n = 3 2   k ⋅ T oder 1 2 m ⋅ v 2 ¯ = 3 2   k ⋅ T

Artikel lesen

Temperatur und Temperaturmessung

Die Temperatur kennzeichnet den thermischen Zustand von Körpern oder Systemen. Sie gibt an, wie heiß oder wie kalt ein Körper bzw. ein System ist. Die Temperatur wird bei uns meist in Grad Celsius oder in Kelvin angegeben. Daneben gibt es mit der FAHRENHEIT-Skala und der REAUMUR-Skala weitere Temperaturskalen.
Die Temperatur kann in vielfältiger Weise gemessen werden. Am meisten verbreitet sind verschiedene Arten von Thermometern.
Für unsere Temperaturwahrnehmung spielt nicht nur die Temperatur im physikalischen Sinne eine Rolle, sie wird auch von anderen Faktoren beeinflusst. In der Meteorologie spricht man von der gefühlten Temperatur.

Artikel lesen

Thermodynamische Systeme

Thermodynamische Systeme sind physikalische Systeme, in denen thermodynamische Erscheinungen und Vorgänge ablaufen. Abgegrenzt sind sie von der Umgebung durch eine Systemgrenze, die festgelegt werden muss. Wie andere physikalische Systeme kann auch ein thermodynamisches System abgeschlossen, geschlossen oder offen sein. Charakterisiert wird der Zustand eines Systems mit Zustandsgrößen, z.B. der Temperatur, dem Druck oder dem Volumen. Die Beschreibung der Vorgänge zwischen Körpern im System und auch zwischen dem System der seiner Umgebung erfolgt durch Prozessgrößen, z.B. der Wärme und der Arbeit.

Artikel lesen

Thermografie

Die Thermografie ist ein Verfahren, bei dem mithilfe von speziellen Kameras die Wärmestrahlung sichtbar gemacht wird, die von Körpern bzw. von technischen Objekten ausgeht. Da die Intensität und Zusammensetzung der Wärmestrahlung temperaturabhängig ist, ermöglicht eine thermografische Aufnahme die Temperaturverteilung bei dem betreffenden Körper zu erkennen und daraus Folgerungen abzuleiten.

Artikel lesen

Treibhauseffekt

Der natürliche Treibhauseffekt bewirkt, dass auf der Erdoberfläche eine durchschnittliche Temperatur von 15 °C herrscht und sich dadurch überhaupt erst Leben entwickeln konnte.
Davon zu unterscheiden ist der zusätzliche oder anthropogene Treibhauseffekt, der auf das Wirken des Menschen zurückzuführen ist und der eine zusätzliche Erwärmung der Erdoberfläche bewirkt.

Artikel lesen

Johannes Diderik van der Waals

* 23.11.1837 Leiden
† 08.03.1923 Amsterdam

Er war ein niederländischer Physiker, der sich vor allem mit Flüssigkeiten und Gasen beschäftigte. Seine wahrscheinlich bedeutendste wissenschaftliche Leistung war die Aufstellung einer Gleichung für reale Gase, die heute die Bezeichnung van der waalssche Zustandsgleichung trägt. Für seine wissenschaftlichen Leistungen wurde er 1910 mit dem Nobelpreis für Physik ausgezeichnet.

Artikel lesen

Verdunsten und Verdampfen

Als Verdunsten bezeichnet man den Übergang vom flüssigen in den gasförmigen Aggregatzustand unterhalb der Siedetemperatur, als Verdampfen
den Übergang vom flüssigen in den gasförmigen Aggregatzustand bei Siedetemperatur. Das Verdampfen erfolgt also stets in Verbindung mit dem Sieden. Nähere Hinweise dazu sind unter diesem Stichwort zu finden. Insbesondere bei Wasser wird häufig vom Verdampfen gesprochen.
Wie schnell Wasser oder andere Flüssigkeiten verdunsten, hängt von verschiedenen Faktoren ab.

Artikel lesen

Volumenänderung von Körpern

Bei einer bestimmten Temperatur nimmt ein fester Körper, eine Flüssigkeit oder ein Gas ein bestimmtes Volumen ein. Ändert sich die Temperatur, so ändert sich in der Regel auch das Volumen, wenn der betreffende Körper die Möglichkeit der Volumenänderung hat. Die Volumenänderung ist dann umso größer,

  • die größer das Ausgangsvolumen ist und
  • je größer die Temperaturänderung ist.

Sie ist darüber hinaus davon abhängig, aus welchem Stoff der betreffende Körper besteht.
Besitzt der Körper nicht die Möglichkeit der Volumenänderung, wie das z.B. bei Luft in einem Autoreifen oder Gas in einer Gasflasche der Fall ist, so verändert sich der Druck.

Artikel lesen

Felix Wankel

* 13.08.1902 in Lahr
† 09.10.1988 in Heidelberg

Er war ein deutscher Techniker, der einen Drehkolbenmotor entwickelte, der heute auch unter dem Namen Wankelmotor bekannt ist.

Artikel lesen

Die Wärme

Die Wärme ist eine relativ komplizierte physikalische Größe, deren Wesen erst im Laufe vieler Jahrzehnte geklärt werden konnte. Heute kann man klar definieren: Die Wärme gibt an, wie viel thermische Energie von einem Körper auf einen anderen Körper übertragen wird.

 Formelzeichen:Q
 Einheit:ein Joule (1 J)

Die Wärme ist wie die mechanische Arbeit eine Prozessgröße, da sie den Prozess der Energieübertragung zwischen Körpern beschreibt.

Artikel lesen

Wärmeaustausch zwischen Körpern

Kommen zwei Körper unterschiedlicher Temperatur in Kontakt und bleiben sie sich selbst überlassen, so erfolgt zwischen ihnen ein Wärmeaustausch und damit ein Temperaturausgleich. Es gilt das Grundgesetz des Wärmeaustausches, das folgendermaßen lautet:

Wenn zwei Körper unterschiedlicher Temperatur in engen Kontakt miteinander kommen, so gibt der Körper höherer Temperatur Wärme ab, der Körper niedrigerer Temperatur nimmt Wärme auf. Die vom Körper höherer Temperatur abgegebene Wärme ist genauso groß wie die vom Körper niedrigerer Temperatur aufgenommene Wärme.

Q ab = Q zu

Diesen Zusammenhang kann man nutzen, um z. B. die Mischungstemperatur zweier Wassermengen zu berechnen.

Artikel lesen

Wärmeleitung

Die Wärmeleitung ist eine Art der Wärmeübertragung, bei der Wärme durch Körper hindurch von Bereichen höherer Temperatur zu Bereichen niedrigerer Temperatur übertragen wird. Die Wärmeleitfähigkeit von Stoffen ist unterschiedlich. Es gibt gute und schlechte Wärmeleiter.
Die Wärmeleitung kann in einem Stoff erfolgen. Sie kann aber auch von einem Stoff in einen anderen (Wärmeübergang) oder durch einen Stoff hindurch (Wärmedurchgang) vor sich gehen.

Artikel lesen

Wärmequellen, thermische Leistung, Verbrennungswärme

Wärmequellen sind technische Geräte oder natürliche Objekte, die Wärme an ihre Umgebung abgeben. Die wichtigste Wärmequelle für die Entwicklung und Erhaltung des Lebens auf der Erde ist die Sonne. In der Regel muss einer Wärmequelle zunächst Energie zugeführt werden, damit sie Energie in Form von Wärme abgeben kann.
Die Leistung, die eine Wärmequelle an die Umgebung abgibt, wird als thermische Leistung bezeichnet, die man mit der Gleichung
P = Q t
berechnen kann. Viele vom Menschen genutzte Wärmequellen werden mit Brenn- oder Heizstoffen betrieben. Dabei spielt der Heizwert der betreffenden Stoffe und die bei ihrer Verbrennung frei werdende Verbrennungswärme eine entscheidende Rolle.

Artikel lesen

Wärmestrahlung

Die Wärmestrahlung ist eine Art der Wärmeübertragung, bei der Wärme durch elektromagnetische Wellen (infrarote Strahlung, infrarotes Licht) übertragen wird. Im Unterschied zu Wärmeleitung und Wärmeströmung kann sich Wärmestrahlung auch im Vakuum ausbreiten.
Die wichtigste Quelle für Wärmestrahlung ist die Sonne.

Artikel lesen

Wärmeströmung

Die Wärmeströmung, auch Konvektion genannt, ist eine Form der Wärmeübertragung, bei der Wärme durch strömende Flüssigkeiten
(z. B. Wasser) oder strömende Gase (z. B. Luft) übertragen wird.
Wie viel Wärme durch Wärmeströmung übertragen wird, ist abhängig

  • von dem Stoff, der die Wärme transportiert,
  • von der durchströmten Fläche,
  • von der Temperaturdifferenz,
  • von der Strömungsgeschwindigkeit,
  • von der Zeit.
Artikel lesen

James Watt

* 19.01.1736 in Greenrock bei Glasgow
† 19.08.1819 in Heathfield bei Birmingham

Er war ein schottischer Mechaniker und Naturforscher, war Universitätsmechaniker in Glasgow und dort mit der Wartung einer Dampfmaschine betraut. Überlegungen über die Verbesserung dieser Maschine führten ihn 1769 zur Erfindung einer Dampfmaschine mit getrenntem Kondensator, die sich als Antriebsmaschine durchsetzte.
Nach ihm ist heute die Einheit der Leistung benannt.

Seitennummerierung

  • Previous Page
  • Seite 6
  • Seite 7
  • Aktuelle Seite 8
  • Seite 9
  • Seite 10
  • Seite 11
  • Next Page

594 Suchergebnisse

Fächer
  • Physik (594)
Klassen
  • 5. Klasse (684)
  • 6. Klasse (684)
  • 7. Klasse (684)
  • 8. Klasse (684)
  • 9. Klasse (684)
  • 10. Klasse (684)
  • Oberstufe/Abitur (594)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025