Direkt zum Inhalt

16 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt.
Die gleichförmige Kreisbewegung ist eine beschleunigte Bewegung, da sich ständig die Richtung der Geschwindigkeit ändert.

Artikel lesen

Gravitationskräfte und Bewegungen

Planeten, Monde und künstliche Satelliten bewegen sich unter dem Einfluss von Gravitationskräften auf näherungsweise kreisförmigen oder elliptischen Bahnen. Viele Kometen bewegen sich auf parabolischen Bahnen. Die Bahnform wird durch die wirkenden Gravitationskräfte und die Geschwindigkeit des Körpers bestimmt. Ein besonders einfacher Zusammenhang besteht bei kreisförmigen Bahnen zwischen der für eine gleichförmige Kreisbewegung erforderlichen konstanten Radialkraft und der wirkenden Gravitationskraft.

Artikel lesen

Kraft

Die Kraft gibt an, wie stark zwei Körper aufeinander einwirken. Die Kraft ist eine Wechselwirkungsgröße und eine gerichtete (vektorielle) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, von ihrer Richtung und von ihrem Angriffspunkt.

Formelzeichen: F →
Einheit: ein Newton (1 N)


Man unterscheidet u. a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Gewichtskräfte, Adhäsionskräfte und Kohäsionskräfte voneinander.

Artikel lesen

Kurvenfahrten

Zum sicheren Durchfahren einer Kurve muss bei jedem Fahrzeug eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese radial gerichtete Kraft, die Radialkraft, wird durch die Reibung zwischen Straße und Reifen aufgebracht.
Die aufzubringende Radialkraft ist umso größer,

  • je größer die Geschwindigkeit des Fahrzeuges ist,
  • je größer seine Masse ist,
  • je kleiner der Krümmungsradius der Kurve ist.
Artikel lesen

Radialbeschleunigung

Die Radialbeschleunigung gibt an, wie schnell sich bei einer Kreisbewegung die Richtung der Geschwindigkeit ändert.
Formelzeichen: a r
Einheit: ein Meter je Quadratsekunde ( 1 m s 2 )

Die Radialbeschleunigung kann mit den folgenden Gleichungen berechnet werden:

a r = v 2 r        a r = 4 π 2 ⋅ r T 2        a r = 4 π 2 ⋅ r ⋅ n 2

Die Radialbeschleunigung ist eine gerichtete (vektorielle) Größe, die immer zum Zentrum der Kreisbewegung gerichtet ist. Sie ist deutlich zu unterscheiden von einer Beschleunigung längs der Bahn des Körpers (Bahnbeschleunigung oder Beschleunigung).

Artikel lesen

Radialkraft

Die Radialkraft gibt an, mit welcher Kraft ein Körper auf einer Kreisbahn gehalten wird.

Formelzeichen: F → r
Einheit:ein Newton (1 N)

Die Radialkraft, auch Zentralkraft oder Zentripetalkraft genannt, kann mit folgenden Gleichungen berechnet werden:


F r = m ⋅ v 2 r       F r = m ⋅ 4 π 2 ⋅ r T 2       F r = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Sie ist, wie jede andere Kraft, eine gerichtete (vektorielle) Größe und immer in Richtung Zentrum der Kreisbewegung gerichtet.

Artikel lesen

Schwerelosigkeit

Unter Schwerelosigkeit oder Gewichtslosigkeit versteht man die Erscheinung, dass z. B. Körper in einer Raumstation, die die Erde umkreist, keine Kraft auf eine Unterlage oder eine Aufhängung ausüben. Die Gewichtskraft, die nach wie vor auf die Körper wirkt, ist nicht spürbar. Damit "schweben" sie in dem betreffenden Raum. Ursache für die Schwerelosigkeit ist die Gewichtskraft, die nicht durch eine Gegenkraft aufgehalten wird.

Artikel lesen

Bahnformen und Energie von Satelliten

Künstliche Satelliten können sich auf sehr unterschiedlichen Bahnen um die Erde oder zu anderen Himmelskörpern hin bewegen. Dabei handelt es sich um kreisförmige, elliptische oder parabelförmige Bahnen, die aber durch Triebwerke oder durch den Einfluss von Himmelskörpern verändert werden können.
Bei interplanetaren Flugbahnen sind die HOHMANN-Bahnen von besonderem Interesse.
Bei Swing-by-Manövern nutzt man das Gravitationsfeld und die Eigenbewegung von Himmelskörpern dazu, die Bahn und die Bewegung von Satelliten zu beeinflussen.

Artikel lesen

Gewichtskräfte

Die Gewichtskraft gibt an, wie stark ein Körper auf eine Unterlage drückt oder an einer Aufhängung zieht.

Formelzeichen: F → G
Einheit:ein Newton (1 N)


Die Gewichtskraft kann mit der Gleichung F → G = m ⋅ g → berechnet werden. Sie ist wie jede andere Kraft eine gerichtete (vektorielle) Größe. Im Unterschied zur Masse ist die Gewichtskraft vom Ort abhängig, an dem sich der betreffende Körper befindet.
Ein spezieller Fall liegt vor, wenn die Kraft auf eine Unterlage oder eine Aufhängung null ist. Dann spricht man von Schwerelosigkeit oder Gewichtslosigkeit.

Artikel lesen

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt.
Die gleichförmige Kreisbewegung ist eine beschleunigte Bewegung, da sich ständig die Richtung der Geschwindigkeit ändert.

Artikel lesen

Gravitationskräfte und Bewegungen

Planeten, Monde und künstliche Satelliten bewegen sich unter dem Einfluss von Gravitationskräften auf näherungsweise kreisförmigen oder elliptischen Bahnen. Viele Kometen bewegen sich auf parabolischen Bahnen. Die Bahnform wird durch die wirkenden Gravitationskräfte und die Geschwindigkeit des Körpers bestimmt. Ein besonders einfacher Zusammenhang besteht bei kreisförmigen Bahnen zwischen der für eine gleichförmige Kreisbewegung erforderlichen konstanten Radialkraft und der wirkenden Gravitationskraft.

Artikel lesen

Gravitation und Gravitationsgesetz

Alle Körper ziehen sich aufgrund ihrer Massen gegenseitig an. So zieht z. B. die Erde den Mond an. Umgekehrt zieht auch der Mond die Erde an.
Die gegenseitige Anziehung von Körpern aufgrund ihrer Massen wird Massenanziehung oder Gravitation (gravis, lat.: schwer) genannt. Die dabei wirkenden Kräfte werden als Schwerkräfte oder als Gravitationskräfte bezeichnet.
Die Gravitationskraft zwischen zwei Körpern kann mit dem Gravitationsgesetz berechnet werden. Sie ist umso größer,

  • je größer die Massen der Körper sind und
  • je kleiner der Abstand ihrer Massenmittelpunkte voneinander ist.
Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Artikel lesen

Kurvenfahrten

Zum sicheren Durchfahren einer Kurve muss bei jedem Fahrzeug eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese radial gerichtete Kraft, die Radialkraft, wird durch die Reibung zwischen Straße und Reifen aufgebracht.
Die aufzubringende Radialkraft ist umso größer,

  • je größer die Geschwindigkeit des Fahrzeuges ist,
  • je größer seine Masse ist,
  • je kleiner der Krümmungsradius der Kurve ist.

Welche Kräfte bei einer Kurvenfahrt tatsächlich wirken und wie schnell man eine Kurve durchfahren kann, hängt auch davon ab, ob die Kurve überhöht ist und ob man die Bewegung eines vierrädrigen oder eines zweirädrigen Fahrzeuges betrachtet.

Artikel lesen

Wissenstest, Dynamik


Die Dynamik beschäftigt sich mit den Kräften und ihren Wirkungen. Die Zusammensetzung und Zerlegung von Kräften spielt bei zahlreichen Anwendungen eine wichtige Rolle. Die verschiedenen Arten von Kräften (Gewichtskräfte, Reibungskräfte, Kräfte bei der Drehbewegung) haben unterschiedliche Ursachen und Wirkungen. Die grundlegenden Gesetze der Dynamik sind die drei newtonschen Gesetze. Bei dem Test geht es darum nachzuweisen, dass sichere Kenntnisse über die Grundlagen der Dynamik vorliegen.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Dynamik".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

16 Suchergebnisse

Fächer
  • Physik (16)
Klassen
  • 5. Klasse (7)
  • 6. Klasse (7)
  • 7. Klasse (7)
  • 8. Klasse (7)
  • 9. Klasse (7)
  • 10. Klasse (7)
  • Oberstufe/Abitur (9)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025