Direkt zum Inhalt

17 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Materialverflechtungen

Materialflüsse innerhalb einer ökonomischen Einheit drücken technologische und ökonomische Beziehungen zwischen den einzelnen Produktionsebenen aus.
Bei der Planung und Bilanzierung derartiger Wechselbeziehungen wird ein mathematisches Modell mit Matrizen und Vektoren gebildet. Dies ermöglicht es, in komprimierter Form die quantitativen Werte zu erfassen und zu bewerten.

Artikel lesen

Inversion von Matrizen

Um die Inverse einer Matrix zu bestimmen, gibt es zwei prinzipielle Verfahren (Möglichkeiten).
Beim GAUSS-JORDAN-Verfahren wird mithilfe elementarer Matrizenumformungen die Matrix gegen die Einheitsmatrix ausgetauscht wird.
Beim Austauschverfahren werden nach einem angegebenen Algorithmus die Zeile r und die Spalte s der Matrix vertauscht.

Artikel lesen

Multiplikation einer Matrix mit einem Vektor

Für die Produktbildung A ⋅ c → (Multiplikation einer Matrix mit einem Vektor) muss vorausgesetzt werden, dass die Anzahl der Spalten in der Matrix A mit der Anzahl der Koordinaten des Vektors c → übereinstimmt.
Die Koordinaten des neuen Spaltenvektors, der durch die Multiplikation A ⋅ c → entsteht, erhält man jeweils als Summe der Koordinatenprodukte eines Zeilenvektors von A und des Spaltenvektors c → .

Artikel lesen

Laplace-Experimente

Ein Zufallsexperiment (Zufallsversuch) mit einer endlichen Ergebnismenge Ω = { e 1 ;   e 2 ;   ... ;   e n } heißt LAPLACE-Experiment, wenn es der LAPLACE-Annahme genügt, d.h. wenn alle seine atomaren Ereignisse gleichwahrscheinlich sind, d.h. wenn diese jeweils mit derselben Wahrscheinlichkeit P ( { e 1 } ) = P ( { e 2 } ) = ... = P ( { e n } ) eintreten.

Artikel lesen

Rekursive Definitionen spezieller Zahlenfolgen

Eine Möglichkeit der Darstellung einer Zahlenfolge ist die Angabe einer rekursive Bildungsvorschrift.
Eine rekursive Bildungsvorschrift gibt an, wie man ein beliebiges Glied a n   +1 einer Zahlenfolge aus seinem Vorgänger a n oder auch aus mehreren Vorgängern a n ,       a n   −   1 usw. gewinnen kann und wie das Anfangsglied a 1 (und ggf. auch noch darauf folgende Glieder) der Folge lautet (lauten).
Beispiel für rekursiv definierte Folgen sind die FIBONACCI-Folge und die sogenannte ( 3 n + 1 ) -Folge (ULAM-Folge).

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Artikel lesen

Kurven in Polarkoordinatendarstellung

Kegelschnitte können auch in Polarkoordinatendarstellung angegeben werde.
Die Darstellung mithilfe von Polarkoordinaten wird auch benutzt für Spiralen, Schraubenlinien und cassinische Kurven.

Artikel lesen

Schwerpunkt eines Dreiecks

Der Schwerpunkt S des Dreiecks P 1   P 2   P 3 ist der Schnittpunkt der Seitenhalbierenden. Er teilt diese (vom jeweiligen Eckpunkt des Dreiecks her gesehen) im Verhältnis 2 : 1.
Im Folgenden sollen die Koordinaten des Schwerpunktes S ( x S ;   y S ;   z S ) eines Dreiecks P 1   P 2   P 3 bestimmt werden.

Artikel lesen

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Artikel lesen

Lösbarkeitskriterien für inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem besitzt nur dann Lösungen, wenn der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. Ist dieser gleich der Anzahl der Variablen, so existiert genau eine Lösung; ist er kleiner als die Anzahl der Variablen, dann existieren unendlich viele Lösungen.
Ist der Rang der Koeffizientenmatrix kleiner als der Rang der erweiterten Koeffizientenmatrix, dann besitzt das Gleichungssystem keine Lösung.

Artikel lesen

Cramersche Regel

Lineare Gleichungssysteme können mithilfe von Determinanten gelöst werden. Eine entsprechende Regel dazu entwickelte der Schweizer Mathematiker GABRIEL CRAMER (1704 bis 1752).

Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Korrelation und lineare Regression

Die grafische Darstellung von Wertepaaren ( x i ;   y i ) zweier Größen X und Y führt häufig zu einer Menge von Punkten, die nicht ohne Weiteres einer Funktion bzw. einer Kurve zugeordnet werden können.
Es stellt sich die Frage, ob zwischen den Größen eine Abhängigkeit besteht.
Oftmals ist in solchen Fällen eine Funktion gesucht, deren Graph möglichst nahe an allen Punkten liegt.
Dies führt zur Definition der Korrelation sowie der Regression.

Artikel lesen

Wurzelfunktionen

Funktionen mit Gleichungen der Form   y = f ( x ) = x m n   ( x ≥ 0 ;       m ,   n ∈ ℕ ;     m ≥ 1 ;     n ≥ 2 )
heißen Wurzelfunktionen.

Artikel lesen

Gleichungen mit absoluten Beträgen

Gleichungen, bei denen von der Variablen (Unbekannten) direkt oder indirekt der absolute Betrag angegeben ist, sind weder der Gruppe der algebraischen Gleichungen noch der Gruppe der transzendenten Gleichungen zuzuordnen.
Beim Lösen von Gleichungen mit Beträgen sind Fallunterscheidungen vornehmen.
Dies wird für lineare und quadratische Gleichungen demonstriert.

Artikel lesen

Lösen von Exponentialgleichungen

Eine Gleichung nennt man Exponentialgleichung, wenn mindestens ein freie Variable (Unbekannte) als Exponent auftritt.
Exponentialgleichungen können durch Exponentenvergleich, durch Logarithmieren bzw. auf grafischem Wege gelöst werden.

17 Suchergebnisse

Fächer
  • Mathematik (17)
Klassen
  • 5. Klasse (112)
  • 6. Klasse (112)
  • 7. Klasse (112)
  • 8. Klasse (112)
  • 9. Klasse (112)
  • 10. Klasse (112)
  • Oberstufe/Abitur (17)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025