Direkt zum Inhalt

429 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Potenzregel der Differenzialrechnung

Im Folgenden soll die Potenzregel der Differenzialrechnung für Potenzfunktionen f ( x ) = x n bewiesen werden.
Über die natürlichen Zahlen als Exponenten hinaus ist die Potenzregel auf Potenzfunktionen mit ganzzahligen Exponenten n ( f a l l s       x 0 ≠ 0 ) , mit rationalen Exponenten n ( x > 0 ) und sogar mit reellen Exponenten n ( x > 0 ) anwendbar. Man nennt diesen Sachverhalt auch die erweiterte Potenzregel.

Artikel lesen

Produktregel der Differenzialrechnung

Im Folgenden soll die Produktregel der Differenzialrechnung bewiesen werden.
Die Produktregel lässt sich auch auf endlich viele Faktoren erweitern. 

Artikel lesen

Quotientenregel der Differenzialrechnung

Im Folgenden soll die Quotientenregel der Differenzialrechnung bewiesen werden.    

Artikel lesen

Korrelation und lineare Regression

Die grafische Darstellung von Wertepaaren ( x i ;   y i ) zweier Größen X und Y führt häufig zu einer Menge von Punkten, die nicht ohne Weiteres einer Funktion bzw. einer Kurve zugeordnet werden können.
Es stellt sich die Frage, ob zwischen den Größen eine Abhängigkeit besteht.
Oftmals ist in solchen Fällen eine Funktion gesucht, deren Graph möglichst nahe an allen Punkten liegt.
Dies führt zur Definition der Korrelation sowie der Regression.

Artikel lesen

Michel Rolle

* 21. April 1652 Ambert, Basse-Auvergne
† 8. November 1719 Paris

MICHEL ROLLE ist vor allem durch den nach ihm benannten Satz der Analysis bekannt. Vorrangig arbeitete er jedoch auf den Gebieten der Geometrie und der Algebra.

Artikel lesen

Der Satz von ROLLE

Für eine Reihe von Aufgabenstellungen der Differenzialrechnung, z.B. bei Kurvendiskussionen (Untersuchung des Monotonieverhaltens, der Existenz lokaler Extrema, des Vorhandenseins von Wendepunkten und des Krümmungsverhaltens von Funktionen) oder beim Berechnen von Näherungswerten von Funktionen sind die so genannten globalen Sätze von besonderer Bedeutung.
Zu diesen zählen unter anderem der Mittelwertsatz der Differenzialrechnung und der nachstehend betrachtete Satz von ROLLE.

Artikel lesen

Sekantennäherungsverfahren (regula falsi)

Ist das exakte Ermitteln der Nullstellen einer Funktion nicht möglich oder sehr aufwendig, so können diese mithilfe geeigneter Verfahren näherungsweise bestimmt werden. Ein solches Verfahren, das (zudem) ohne die Mittel der Infinitesimalrechnung auskommt, ist das Sekantennäherungsverfahren, die sogenannte regula falsi (Regel des „falschen“ Wertes).

Artikel lesen

Extremwertprobleme beim senkrechten Wurf

In der Mechanik werden u.a. Bewegungsvorgänge von Körpern untersucht. Dabei wird in der Regel nach dem zurückgelegten Weg, der Geschwindigkeit und der Beschleunigung gefragt. Insbesondere bei den Wurfbewegungen lassen sich viele Fragestellungen mithilfe der Methoden der Differenzialrechnung bearbeiten.

Beim senkrechten Wurf nach oben geht man davon aus, dass ein Körper mit einer bestimmten Anfangsgeschwindigkeit senkrecht nach oben „geschossen“ wird. Anschließend wird untersucht, wie er sich im Schwerefeld der Erde bewegt.

Mithilfe der 1. Ableitung lassen sich Aussagen über die Momentangeschwindigkeit oder die maximale Steighöhe gewinnen.

Artikel lesen

Summenregel der Differenzialrechnung

Im Folgenden soll die Summenregel der Differenzialrechnung bewiesen werden.
Die Summenregel gilt auch für mehr als zwei Summanden, was mithilfe des Beweisverfahrens der vollständigen Induktion bewiesen werden kann.

Artikel lesen

Tangentenproblem

In der historischen Entwicklung der Differenzialrechnung spielte das sogenannte Tangentenproblem eine große Rolle.

Artikel lesen

Taylor-Entwicklung einiger trigonometrischer Funktionen

Ist f eine nichtrationale Funktion mit der Gleichung y = f(x), dann ist es nicht möglich, zur Annäherung von y = f(x) ein Polynom n-ter Ordnung zu verwenden, dessen Koeffizienten mit den Ableitungen von y = f(x) an der Stelle x 0 in derselben Weise gebildet werden, wie die Koeffizienten der TAYLOR-Entwicklung einer ganzrationalen Funktion.

Dies ergibt sich bereits daraus, dass – im Unterschied zu ganzrationalen Funktionen n-ten Grades – die (n + 1)-te Ableitung und alle weiteren Ableitungen einer nichtrationalen Funktion im Allgemeinen nicht identisch gleich null sind.

Das heißt: Die Entwicklung einer solchen Funktion an einer Stelle x 0 „bricht nicht ab“, sondern würde zu einer Summe mit unendlich vielen Summanden (Reihe) führen. Man spricht deshalb auch von der Entwicklung einer Funktion in eine TAYLOR-Reihe.
An zwei Beispielen wird gezeigt, dass sich die Sinus- und auch die Kosinusfunktion in eine TAYLOR-Reihe entwickeln lassen.

Artikel lesen

Taylor-Polynome

Wie aus der Differenzialrechnung bekannt ist, liefert für eine differenzierbare Funktion f die Tangentenfunktion f t gute Näherungen der Funktionswerte von f. Im Folgenden wird der der Zusammenhang zwischen den Koeffizienten des Näherungspolynoms und den Ableitungen der gegebenen Funktion untersucht.

Artikel lesen

Newtonsches und lagrangesches Interpolationsverfahren

Aufgabe der (allgemeinen) Interpolation ist es, zu n + 1 Punkten P 0 ,       P 1 ,       P 2 ,       ...,       P n ein Polynom (möglichst kleinen Grades) mit der Eigenschaft p ( x i ) = y i       ( m i t       i = 0,     1,     2,     ...,     n ) zu finden.
Dies ist mit dem newtonschen sowie dem lagrangeschen Interpolationsverfahren möglich, wobei das erstere Verfahren die größere praktische Bedeutung hat.

Artikel lesen

Der carnotsche Kreisprozess

Als Beispiel für die Anwendung der Integralrechnung wird im Folgenden die mechanische Arbeit einer Wärmekraftmaschine im Allgemeinen und die vom Kolben eines Viertakt-Ottomotors verrichtete Arbeit im Besonderen betrachtet.

Artikel lesen

Archimedes von Syrakus

* etwa 287 v.Chr.
† 212 v.Chr.

ARCHIMEDES VON SYRAKUS zählt zu den bedeutendsten Mathematikern nicht nur der Antike. Viele seiner Ideen waren Ausgangspunkt für wissenschaftliche Arbeiten von Mathematikern verschiedenster Epochen.
ARCHIMEDES entwickelte Methoden zur Bestimmung des Schwerpunktes und des Inhalts von Flächen und Körpern. Er schrieb über Arithmetik und Astronomie. Des Weiteren beschäftigte er sich intensiv mit mathematischen Grundlagen physikalischer Prozesse.

Artikel lesen

Gebrochenrationale Funktionen

Eine Funktion f, deren Funktionsterm ein Quotient zweier Polynome p ( x )  und  q ( x ) ist, heißt gebrochenrationale Funktion. Man unterscheidet zwischen echt und unecht gebrochenrationalen Funktionen.
Durch Polynomdivision kann der Funktionsterm einer unecht gebrochenrationalen Funktion in einen ganzrationalen und einen echt gebrochenrationalen Term zerlegt werden.

Artikel lesen

Hyperbolische Funktionen (Hyperbelfunktionen)

Die sogenannten hyperbolischen Funktionen traten in ihren Grundlagen u.a. bereits bei NEWTON auf. Die Theorie dieser Funktionen begründete der italienische Mathematiker VINCENZO RICCATI.
Im Jahre 1768 kam JOHANN HEINRICH LAMBERT auf die Idee, sie für die Trigonometrie zu nutzen.

Artikel lesen

Funktionenklassen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Funktionenklassen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Funktionen von mehreren Variablen

Der Funktionsbegriff lässt sich für Funktionen mit zwei und mehr (unabhängigen) Variablen erweitern.
Elemente der Definitionsmenge sind dann Zahlenpaare, Zahlentripel bzw. n-Tupel.
Funktionen mit zwei unabhängigen Variablen lassen sich als Flächen im dreidimensionalen Raum darstellen.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Verketten von Funktionen

Ist für x ∈ D g eine Funktion z = g ( x ) mit dem Wertebereich W g gegeben und ferner für z ∈ W g eine Funktion y = f ( z ) , dann heißt y = f ( g ( x ) )         ( mit        x ∈ D g ) mittelbare (verkettete) Funktion von x .
Schreibweise: y = f ∘ g (gelesen: f „Kuller“ g oder f „Kringel“ g)
Anmerkungen: Es ist die Verkettungsvoraussetzung W g ⊆ D f zu beachten.
f ∘ g bedeutet: Erst g dann f anwenden (d.h. f nach g ).

Die Funktion f nennt man äußere Funktion, die Funktion g innere Funktion der verketteten Funktion y = f ( g ( x ) ) .

Artikel lesen

Verknüpfen von Funktionen

Funktionen mit einem gemeinsamen Definitionsbereich können addiert, subtrahiert und multipliziert werden, d.h., es gilt:
  ( f + g ) ( x ) = f ( x ) + g ( x ) ( f − g ) ( x ) = f ( x ) − g ( x ) ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )

Wenn g ( x ) ≠ 0 ist, dann lässt sich auch der Kehrwert ( 1 g ) ( x ) = 1 g ( x ) und der Quotient ( f g ) ( x ) = f ( x ) g ( x ) bilden.

Artikel lesen

Funktionen mit der Gleichung y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen x und y kann durch eine spezielle lineare Funktion mit der Gleichung
  y = f ( x ) = m x   ( m x ≠ 0 )
beschrieben werden.
Definitonsbereich und Wertevorrat (Wertebereich) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung O verläuft.

Artikel lesen

Funktionen mit der Gleichung y = f(x) = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Seitennummerierung

  • Previous Page
  • Seite 10
  • Seite 11
  • Aktuelle Seite 12
  • Seite 13
  • Seite 14
  • Seite 15
  • Next Page

429 Suchergebnisse

Fächer
  • Mathematik (429)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025