Direkt zum Inhalt

884 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Giuseppe Peano

* 27. August 1858 Cuneo, Piemonte
† 20. April 1932 Turin

GIUSEPPE PEANO trug entscheidend zur Weiterentwicklung der mathematischen Logik und zur Herausarbeitung der axiomatischen Methode bei. Des Weiteren wirkte er auf die Symbolik der Mengenlehre.

Von PEANO stammt das (nach ihm benannte und noch heute verwendete) Axiomensystem zum Aufbau der natürlichen Zahlen.

Artikel lesen

Potenzmenge

Die Potenzmenge P(A) von einer Menge A ist die Menge aller Teilmengen von A.
Die Potenzmenge einer Menge A enthält immer die leere Menge und die Menge A selbst.

Artikel lesen

Produktmenge

Die Produktmenge A x B (gesprochen „A kreuz B“) ist die Menge aller geordneten Paare, deren erstes Element aus A und deren zweites Element aus B ist.
A × B = { ( x ;   y ) :       x ∈ A ∧ y ∈ B }
Die Produktmenge ist nicht kommutativ.

Artikel lesen

Pythagoras von Samos

* etwa 580 v.Chr.
† etwa 500 v.Chr.

PYTHAGORAS vertrat als Philosoph die mystische Lehre von der Zahl als Urprinzip aller Dinge und von der harmonischen Ordnung als höchstes kosmologisches Gesetz. Seine Lehren sind schwer zu trennen von den Auffassungen des Geheimbundes der Pythagoreer.
Der Satz des PYTHAGORAS kann wohl als bekanntester Satz der (Schul-)Mathematik bezeichnet werden.

Artikel lesen

Ringe

Der Begriff des Ringes baut auf dem Begriff Gruppe auf und gehört ebenso wie dieser zu den grundlegenden Strukturbegriffen der Algebra. Während bei der Gruppe nur eine zwischen den Elementen erklärte Verknüpfung betrachtet wird, werden beim Ring gleichzeitig zwei Verknüpfungen in ihrem gegenseitigen Zusammenhang betrachtet.
Die Addition und die Multiplikation sind in den Zahlenbereichen ℕ ,       ℤ ,       ℚ ,       ℝ und ℂ Operationen, die distributiv miteinander verknüpft sind.

Ein Beispiel für endliche Ringe sind Restklassenringe.

Artikel lesen

Earl of Bertrand Arthur William Russell

* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Artikel lesen

Berühmte mathematische Sätze und Vermutungen

Die Mathematik stellt ein vielfältig verwobenes System von mathematischen Begriffen, Aussagen, Axiomen, Regeln usw. unterschiedlicher Abstraktionshöhe dar, das in einer langen Geschichte gewachsen ist und sich ständig weiterentwickelt. Dieser Prozess hat dabei seine Ursache sowohl in inneren Bedürfnissen der Mathematik selbst als auch in Anforderungen der Praxis.
Aussagen, deren Wahrheitswert noch nicht bewiesen werden konnte, tragen den Charakter von Vermutungen. So stehen die Beweise beispielsweise für die goldbachsche Vermutung oder die Vermutung über Primzahlzwillinge noch aus.

Artikel lesen

Schlussregeln

In der Mathematik ist es häufig erforderlich, neue Aussagen aus schon vorhandenen Aussagen zu gewinnen oder auch zu zeigen, dass sich eine bestimmte Aussage zwingend aus bereits als wahr erkannten Aussagen ergibt. Hierbei werden sogenannte Schlussregeln angewandt.
Man versteht darunter logische Strukturen, die unabhängig von ihrem Inhalt bei jeder Belegung mit den Wahrheitswerten „wahr“ oder „falsch“ stets zu einer wahren Aussagenverbindung führen. Solche Strukturen oder Aussagenverbindungen nennt man logische Identitäten oder auch Tautologien. Die Schlussregeln sind so beschaffen, dass man beim Schließen den Inhalt der Ausgangsaussgen, der Prämissen, gar nicht kennen oder berücksichtigen muss.

Artikel lesen

Bertrand Russell

BERTRAND RUSSELL (1872 bis 1970), englischer Mathematiker, Logiker und Philosoph
* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Artikel lesen

Stanislaw Marcin Ulam

* 03. April 1909 Lemberg (heute: Lwow, Ukraine)
† 13. Mai 1984 Santa Fe (New, Mexico, USA)

STANISLAW ULAM trug maßgeblich zur Entwicklung der ersten Wasserstoffbombe durch die USA bei. Lange Jahre arbeitete er eng mit JOHN VON NEUMANN zusammen.
ULAM gilt als Begründer der sogenannten Monte-Carlo-Methode, einer Methode zum Simulieren von Zufallsexperimenten mithilfe von Zufallszahlen.

Artikel lesen

John Venn

* 4. August 1834 Hull, Humberside;
† 4. April 1923 Cambridge

JOHN VENN arbeitete vor allem auf dem Gebiet der mathematischen Logik. Bekannt wurde er als Schöpfer von Diagrammen zur mathematischen Logik bzw. Mengenlehre.
Mithilfe eines Systems sich überschneidender Kreise bzw. Ellipsen brachte er Beziehungen zwischen Klassen, Mengen bzw. Begriffen zum Ausdruck. Diese Darstellungen stellen eine Weiterentwicklung von Diagrammen dar, wie sie beispielweise schon bei LEONHARD EULER (eulersche Kreise) verwendet wurden.

Artikel lesen

Vereinigungsmenge

Die Vereinigungsmenge von A und B ( A ∪ B ) ist die Menge aller Elemente, die in A oder in B oder in beiden Mengen enthalten sind.
Man liest: „A vereinigt B“.
A ∪ B = { x :       x ∈ A ∨ x ∈ B }
Das Zeichen „ ∨ “ steht für das „oder“ mit den drei angegebenen Bedeutungen.

Artikel lesen

Muhammad ibn Musa Al-Chwarizmi

* um 780 Bagdad (heute in Irak)
† um 850

MUHAMMAD IBN MUSA AL-CHWARIZMI (manchmal auch AL-KHWARIZMI oder AL-CHARISMI geschrieben) war ein persisch-arabischer Mathematiker, der etwa von 780 (als Geburtsjahre werden mitunter 783 bzw. 787 angegeben) bis etwa 850 lebte und insbesondere am Hofe des Kalifen AL-MANSUR (audh AL-MA'MUN) in Bagdad wirkte.

AL-CHWARIZMI Leistungen für die Mathematik sind bedeutsam. Aus seinem Namen wurde für Handlungsvorschriften der Begriff „Algorithmus“ abgeleitet.

Artikel lesen

Julius Wilhelm Richard Dedekind

* 6. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDS Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Artikel lesen

Leonardo Fibonacci von Pisa

* etwa 1180
† etwa 1250

LEONARDO VON PISA (auch FIBONACCI) gilt als der erste europäische „Fachmathematiker“ des Mittelalters. Er behandelte vor allem zahlentheoretische Probleme, wobei die von ihm angegebenen Lösungsverfahren über die Kenntnisse des arabischen und auch des griechischen Kulturkreises hinausgingen.

Artikel lesen

Zahlenfolgen

Eine Funktion, deren Definitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.
Unter der n-ten Partialsumme s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1 bis a n .

Artikel lesen

Anwendungen von Zahlenfolgen

Mithilfe der Formeln für arithmetische und geometrische Folgen lassen sich zahlreiche Anwendungen behandeln.
Allerdings zeigen sich bei bestimmten Aufgaben die Grenzen des mathematischen Modells Zahlenfolgen aufgrund ihres diskreten Definitionsbereiches. In diesem Fall ist eine Beschreibung des Sachverhaltes etwa mit Exponentialfunktionen günstiger.

Artikel lesen

Arithmetische Zahlenfolgen

Eine Zahlenfolge, für die a n = a 1 + ( n − 1 ) d gilt, heißt arithmetische Folge.
Eine arithmetische Folge ist dadurch charakterisiert, dass aufeinanderfolgende Glieder stes den gleichen Abstand d haben. Jedes Folgeglied (außer dem ersten) ist das arithmetische Mittel seiner benachbarten Glieder.

Artikel lesen

Geometrische Zahlenfolgen

Eine Zahlenfolge, für die a n = a 1 ⋅ q n − 1 gilt, heißt geometrische Folge.
Eine geometrische Folge ist dadurch charakterisiert, dass die Folgeglieder jeweils durch Multiplikation mit dem konstanten Faktor q aus dem vorhergehenden Glied entstehen.
Jedes Folgenglied (außer dem ersten) ist das geometrische Mittel seiner beiden Nachbarglieder.

Artikel lesen

Leopold Kronecker

* 7. Dezember 1823 Liegnitz
† 29. Dezember 1891 Berlin

LEOPOLD KRONECKER war ein führender Vertreter der sogenannten Berliner Schule, die dür die Arithmetisierung der gesamten Mathematik eintrat.
KRONECKER arbeitetet insbesondere auf den Gebieten der Arithmetik, Zahlentheorie und Idealtheorie sowie über elliptische Funktionen.
Mit seinem Namen verbunden ist das Kroneckersymbol δ i   k . Darunter versteht man eine Funktion aller Paare ( i ,   k ) mit:
  δ i   k = { 1 für      i = k 0 für      i ≠ k

Artikel lesen

Partialsummen von Zahlenfolgen

Unter der n-ten Partialsumme s n einer Zahlenfolge ( a n ) versteht man die Summe der Folgenglieder von a 1  bis  a n .
Die immer weiter fortgesetzte Partialsumme einer (unendlichen) Zahlenfolge nennt man eine (unendliche) Reihe.

Artikel lesen

Dedekindscher Schnitt

Durch einen dedekindschen Schnitt t werden Zahlenmengen in ein Paar Teilmengen A und B so zerlegt, dass für jedes a ∈ A und jedes b ∈ B die Beziehung a ≤ t ≤ b gilt (wobei t eine reelle Zahl ist).
Man kann dedekindsche Schnitte in der Menge ℚ der rationalen Zahlen benutzen, um die Menge der reellen Zahlen ℝ zu definieren.

Artikel lesen

Monotonie und Beschränktheit von Zahlenfolgen

Eine Zahlenfolge ( a n ) heißt genau dann monoton wachsend bzw. monoton fallend, wenn für alle n ∈ ℕ gilt:
  a n   +   1 ≥ a n   b z w .   a n   +   1 ≤ a n
Wenn jedes Folgenglied echt größer (kleiner) als sein Vorgänger ist, so spricht man von streng monoton wachsenden (fallenden) Folgen.
Eine Zahlenfolge ( a n ) heißt genau dann nach oben beschränkt bzw. nach unten beschränkt, wenn es eine Zahl s ∈ ℝ gibt, so dass für alle Folgenglieder a n gilt:
  a n ≤ s   b z w .   a n ≥ s
Man nennt die reelle Zahl s dann eine obere bzw. eine untere Schranke der Zahlenfolge ( a n ) .

Artikel lesen

Zur Geschichte der Zahlen

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahre 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten die sogenannten arabischen Ziffern ihren Siegeszug an.

Artikel lesen

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

Seitennummerierung

  • Previous Page
  • Seite 29
  • Seite 30
  • Aktuelle Seite 31
  • Seite 32
  • Seite 33
  • Seite 34
  • Next Page

884 Suchergebnisse

Fächer
  • Mathematik (884)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025