Direkt zum Inhalt

313 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Elektrische Ladung

Bestandteil der Atome sind die positiv geladenen Protonen und die negativ geladenen Elektronen. Durch Dissoziation entstehen positiv und negativ geladene Ionen. Ein Körper mit Elektronenüberschuss ist negativ geladen, ein solcher mit Elektronenmangel positiv.
Wie stark ein Körper geladen ist, wird durch die physikalische Größe elektrische Ladung Q erfasst. Allgemein gilt:
Q = n ⋅ e oder Q = ∫ t 1 t 2 I   ( t )     d t
Es gibt unterschiedliche Möglichkeiten, Ladungstrennung hervorzurufen. Zwischen geladenen Körpern wirken je nach ihrer Ladung anziehende oder abstoßende Kräfte, deren Betrag mit dem coulombschen Gesetz erfasst wird. Für die elektrische Ladung gilt ein Erhaltungssatz.

Artikel lesen

Elektrische Leistung

Die elektrische Leistung gibt an, wie viel elektrische Arbeit der elektrische Strom in jeder Sekunde verrichtet bzw. wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen:
Einheit:
P
ein Watt ( 1 W)

Benannt ist die Einheit der Leistung nach dem schottischen Techniker JAMES WATT.

Artikel lesen

Leistung im Wechselstromkreis

Allgemein versteht man unter der elektrischen Leistung den Quotienten aus der an einem Bauelement umgesetzten elektrischen Energie und der Zeit. Im Wechselstromkreis tritt eine Besonderheit auf: An Wirkwiderständen (ohmschen Widerständen) wird elektrische Energie in andere Energieformen umgesetzt. Dagegen „pendelt“ an Blindwiderständen (induktiven und kapazitiven Widerständen) die elektrische Energie zwischen der Quelle und dem Bauelement hin und her, ohne dass die Energie nach außen abgegeben wird. Demzufolge ist analog zu den Wechselstromwiderständen zwischen Wirkleistung P, Blindleistung Q und Scheinleistung S zu unterscheiden. Es gelten folgende Beziehungen:

P = U ⋅ I ⋅ cos   ϕ Q = U ⋅ I ⋅ sin   ϕ S = U ⋅ I Für den Zusammenhang zwischen den Leistungen gilt: S = P 2 + Q 2

Artikel lesen

Leitung in Flüssigkeiten

In Flüssigkeiten erfolgt nur dann ein Leitungsvorgang, wenn durch Dissoziation frei bewegliche (wanderungsfähige) Ionen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Ionen gerichtet. Es wird elektrische Energie in thermische Energie umgewandelt. Eine für Anwendungen wichtige Besonderheit bei Leitungsvorgängen in Flüssigkeiten besteht darin, dass mit den Ionen nicht nur ein Transport von Ladungen, sondern auch ein Stofftransport erfolgt. Das wird z.B. beim Galvanisieren oder beim Lackieren von Autoteilen genutzt.

Artikel lesen

Leitung in Metallen

In Metallen sind infolge der Metallbindung frei bewegliche (wanderungsfähige) Elektronen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Elektronen gerichtet. Der Leitungsvorgang wird durch die Ladungsträgerdichte und die Beweglichkeit der Ladungsträger bestimmt. Diese beiden Größen beeinflussen auch den elektrischen Widerstand. Bei Stromfluss in einem elektrischen Leiter wird stets ein Teil der elektrischen Energie in thermische Energie umgewandelt.
Der Widerstand metallischer Leiter ist temperaturabhängig. Das kann z.B. zum Bau von Metall-Widerstandsthermometern genutzt werden.

Artikel lesen

Lorentz-Kraft

Auf alle geladenen Teilchen oder Körper, die sich in einem magnetischen Feld nicht parallel zu den magnetischen Feldlinien bewegen, wirkt eine Kraft. Diese Kraft bezeichnet man nach dem niederländischen Physiker HENDRIK LORENTZ (1853-1928), der sie gegen Ende des 19. Jahrhunderts näher untersucht hat, als LORENTZ-Kraft.
Berechnungen zur LORENTZ-Kraft sind mitunter recht kompliziert, weil diese Kraft als vektorielle Größe sowohl von der Bewegungsrichtung und dem Betrag der Teilchengeschwindigkeit als auch von der Stärke und Richtung des Magnetfeldes abhängt. Allgemein gilt:
F → = Q ⋅ ( v → × B → )
Für den Sonderfall, dass Bewegungsrichtung und magnetische Feldlinien senkrecht zueinander stehen, kann man den Betrag der LORENTZ-Kraft relativ einfach experimentell untersuchen und berechnen.

Artikel lesen

Dualsystem

Das Dualsystem verwendet als Basis die Zahl 2. Grundziffern sind die 0 und die 1.
Das Dualsystem wird auch als Binärsystem bezeichnet.

Artikel lesen

Materialverflechtungen

Materialflüsse innerhalb einer ökonomischen Einheit drücken technologische und ökonomische Beziehungen zwischen den einzelnen Produktionsebenen aus.
Bei der Planung und Bilanzierung derartiger Wechselbeziehungen wird ein mathematisches Modell mit Matrizen und Vektoren gebildet. Dies ermöglicht es, in komprimierter Form die quantitativen Werte zu erfassen und zu bewerten.

Artikel lesen

Inversion von Matrizen

Um die Inverse einer Matrix zu bestimmen, gibt es zwei prinzipielle Verfahren (Möglichkeiten).
Beim GAUSS-JORDAN-Verfahren wird mithilfe elementarer Matrizenumformungen die Matrix gegen die Einheitsmatrix ausgetauscht wird.
Beim Austauschverfahren werden nach einem angegebenen Algorithmus die Zeile r und die Spalte s der Matrix vertauscht.

Artikel lesen

Multiplikation einer Matrix mit einem Vektor

Für die Produktbildung A ⋅ c → (Multiplikation einer Matrix mit einem Vektor) muss vorausgesetzt werden, dass die Anzahl der Spalten in der Matrix A mit der Anzahl der Koordinaten des Vektors c → übereinstimmt.
Die Koordinaten des neuen Spaltenvektors, der durch die Multiplikation A ⋅ c → entsteht, erhält man jeweils als Summe der Koordinatenprodukte eines Zeilenvektors von A und des Spaltenvektors c → .

Artikel lesen

Laplace-Experimente

Ein Zufallsexperiment (Zufallsversuch) mit einer endlichen Ergebnismenge Ω = { e 1 ;   e 2 ;   ... ;   e n } heißt LAPLACE-Experiment, wenn es der LAPLACE-Annahme genügt, d.h. wenn alle seine atomaren Ereignisse gleichwahrscheinlich sind, d.h. wenn diese jeweils mit derselben Wahrscheinlichkeit P ( { e 1 } ) = P ( { e 2 } ) = ... = P ( { e n } ) eintreten.

Artikel lesen

Schriftliche Division

Beim Verfahren der schriftlichen Division nutzt man das Distributivgesetz.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Artikel lesen

Computeralgebrasysteme

Beim Einsatz des Computeralgeb rasystems “Mathcad 8” können Zahlen und Variablen beliebig verändert werden. Das CAS liefert sofort die neue Lösung bzw. die neue grafische Darstellung.

Artikel lesen

Binomialkoeffizienten

Beim rechnerischen Lösen kombinatorischer Probleme bzw. beim Berechnen von Wahrscheinlichkeiten werden als Binomialkoeffizienten bezeichnete Terme verwendet. Es sind die Koeffizienten, die beim Entwickeln der n-ten Potenz eines Binoms (a + b) auftreten. Sie können aus dem sogenannten pascalschen Zahlendreieck gewonnen werden. Nachteil dabei ist, dass bei diesem Vorgehen rekursiv verfahren wird, d. h., zur Ermittlung der Koeffizienten von ( a + b ) n müssen die von ( a + b ) n − 1 bekannt sein.
Hier wird deshalb eine explizite Definition der Binomialkoeffizienten gegeben, einige Rechenregeln werden plausibel gemacht, und der binomische Satz wird allgemein formuliert.

Artikel lesen

Binomialverteilung

Die Verteilung der Anzahl k der Erfolge in einer Bernoulli-Kette der Länge n und der Erfolgswahrscheinlichkeit p wird Binomialverteilung mit den Parametern n und p genannt. Es gilt:

  P ( X = k ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;     1     ...     n )

Tabellen der Binomialverteilung für bestimmte Parameterwerte von n und p sind in vielen Tafelwerken enthalten.
Binomialverteilungen lassen sich mithilfe des sogenannten Galton-Bretts veranschaulichen.

Artikel lesen

Mittelwerte

Unter dem Mittelwert zweier oder mehrerer Zahlen wird meist das arithmetische Mittel (bzw. der Durchschnitt) verstanden. Darüber hinaus sind allerdings mit dem geometrischen und dem harmonischen Mittel noch weitere Mittelbildungen möglich.

Artikel lesen

Permutationen

Unter einer Permutation versteht man eine Anordnung, bei der alle n Elemente verwendet (d. h. auf n Plätze verteilt) werden. Man unterscheidet Permutationen ohne und mit Wiederholung (der Elemente).

Artikel lesen

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Artikel lesen

Rekursive Definitionen spezieller Zahlenfolgen

Eine Möglichkeit der Darstellung einer Zahlenfolge ist die Angabe einer rekursive Bildungsvorschrift.
Eine rekursive Bildungsvorschrift gibt an, wie man ein beliebiges Glied a n   +1 einer Zahlenfolge aus seinem Vorgänger a n oder auch aus mehreren Vorgängern a n ,       a n   −   1 usw. gewinnen kann und wie das Anfangsglied a 1 (und ggf. auch noch darauf folgende Glieder) der Folge lautet (lauten).
Beispiel für rekursiv definierte Folgen sind die FIBONACCI-Folge und die sogenannte ( 3 n + 1 ) -Folge (ULAM-Folge).

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Artikel lesen

Kurven in Polarkoordinatendarstellung

Kegelschnitte können auch in Polarkoordinatendarstellung angegeben werde.
Die Darstellung mithilfe von Polarkoordinaten wird auch benutzt für Spiralen, Schraubenlinien und cassinische Kurven.

Artikel lesen

Schwerpunkt eines Dreiecks

Der Schwerpunkt S des Dreiecks P 1   P 2   P 3 ist der Schnittpunkt der Seitenhalbierenden. Er teilt diese (vom jeweiligen Eckpunkt des Dreiecks her gesehen) im Verhältnis 2 : 1.
Im Folgenden sollen die Koordinaten des Schwerpunktes S ( x S ;   y S ;   z S ) eines Dreiecks P 1   P 2   P 3 bestimmt werden.

Artikel lesen

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Artikel lesen

Lösbarkeitskriterien für inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem besitzt nur dann Lösungen, wenn der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. Ist dieser gleich der Anzahl der Variablen, so existiert genau eine Lösung; ist er kleiner als die Anzahl der Variablen, dann existieren unendlich viele Lösungen.
Ist der Rang der Koeffizientenmatrix kleiner als der Rang der erweiterten Koeffizientenmatrix, dann besitzt das Gleichungssystem keine Lösung.

Artikel lesen

Cramersche Regel

Lineare Gleichungssysteme können mithilfe von Determinanten gelöst werden. Eine entsprechende Regel dazu entwickelte der Schweizer Mathematiker GABRIEL CRAMER (1704 bis 1752).

Seitennummerierung

  • Previous Page
  • Seite 7
  • Seite 8
  • Aktuelle Seite 9
  • Seite 10
  • Seite 11
  • Seite 12
  • Next Page

313 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (43)
  • Mathematik (129)
  • Physik (139)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025