Direkt zum Inhalt

594 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Elektrische Ladung

Bestandteil der Atome sind die positiv geladenen Protonen und die negativ geladenen Elektronen. Durch Dissoziation entstehen positiv und negativ geladene Ionen. Ein Körper mit Elektronenüberschuss ist negativ geladen, ein solcher mit Elektronenmangel positiv.
Wie stark ein Körper geladen ist, wird durch die physikalische Größe elektrische Ladung Q erfasst. Allgemein gilt:
Q = n ⋅ e oder Q = ∫ t 1 t 2 I   ( t )     d t
Es gibt unterschiedliche Möglichkeiten, Ladungstrennung hervorzurufen. Zwischen geladenen Körpern wirken je nach ihrer Ladung anziehende oder abstoßende Kräfte, deren Betrag mit dem coulombschen Gesetz erfasst wird. Für die elektrische Ladung gilt ein Erhaltungssatz.

Artikel lesen

Elektrische Leistung

Die elektrische Leistung gibt an, wie viel elektrische Arbeit der elektrische Strom in jeder Sekunde verrichtet bzw. wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen:
Einheit:
P
ein Watt ( 1 W)

Benannt ist die Einheit der Leistung nach dem schottischen Techniker JAMES WATT.

Artikel lesen

Leistung im Wechselstromkreis

Allgemein versteht man unter der elektrischen Leistung den Quotienten aus der an einem Bauelement umgesetzten elektrischen Energie und der Zeit. Im Wechselstromkreis tritt eine Besonderheit auf: An Wirkwiderständen (ohmschen Widerständen) wird elektrische Energie in andere Energieformen umgesetzt. Dagegen „pendelt“ an Blindwiderständen (induktiven und kapazitiven Widerständen) die elektrische Energie zwischen der Quelle und dem Bauelement hin und her, ohne dass die Energie nach außen abgegeben wird. Demzufolge ist analog zu den Wechselstromwiderständen zwischen Wirkleistung P, Blindleistung Q und Scheinleistung S zu unterscheiden. Es gelten folgende Beziehungen:

P = U ⋅ I ⋅ cos   ϕ Q = U ⋅ I ⋅ sin   ϕ S = U ⋅ I Für den Zusammenhang zwischen den Leistungen gilt: S = P 2 + Q 2

Artikel lesen

Leitung im Vakuum

Im Vakuum erfolgt nur dann ein elektrischer Leitungsvorgang, wenn durch Emission frei bewegliche (wanderungsfähige) Elektronen in den betreffenden Raum eingebracht werden. Das kann durch Glühemission oder durch Fotoemission geschehen. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Elektronen gerichtet und weitgehend ungehindert. Sie erreichen damit relativ hohe Geschwindigkeiten.

Artikel lesen

Leitung in Flüssigkeiten

In Flüssigkeiten erfolgt nur dann ein Leitungsvorgang, wenn durch Dissoziation frei bewegliche (wanderungsfähige) Ionen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Ionen gerichtet. Es wird elektrische Energie in thermische Energie umgewandelt. Eine für Anwendungen wichtige Besonderheit bei Leitungsvorgängen in Flüssigkeiten besteht darin, dass mit den Ionen nicht nur ein Transport von Ladungen, sondern auch ein Stofftransport erfolgt. Das wird z.B. beim Galvanisieren oder beim Lackieren von Autoteilen genutzt.

Artikel lesen

Leitung in Gasen

Gase sind in der Regel recht gute Isolatoren. Ein Leitungsvorgang in ihnen erfolgt nur dann, wenn durch Ionisation oder Emission frei bewegliche (wanderungsfähige) Elektronen oder Ionen vorhanden sind. Leitungsvorgänge in Gasen sind häufig mit Leuchterscheinungen verbunden. Sie werden deshalb in breitem Umfange in der Beleuchtungstechnik genutzt.

Artikel lesen

Leitung in Halbleitern

Halbleiter sind Stoffe, die bezüglich ihrer elektrischen Leitfähigkeit zwischen der von Isolatoren und der von Leitern liegen. Ihre breite technische Nutzung begann nach der Entdeckung des Transistoreffekts (1948). Ohne die Halbleiterelektronik sind moderne technische Geräte nicht denkbar. Die physikalischen Grundlagen dafür sind elektrische Leitungsvorgänge in Halbleitermaterialien wie Germanium und Silicium, wobei deren Leitfähigkeit durch den gezielten Einbau von Fremdatomen (Dotieren) in weiten Grenzen beeinflusst werden kann. Heute existieren eine Vielzahl von Halbleiterbauelementen für die unterschiedlichsten Anwendungen.

Artikel lesen

Leitung in Metallen

In Metallen sind infolge der Metallbindung frei bewegliche (wanderungsfähige) Elektronen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Elektronen gerichtet. Der Leitungsvorgang wird durch die Ladungsträgerdichte und die Beweglichkeit der Ladungsträger bestimmt. Diese beiden Größen beeinflussen auch den elektrischen Widerstand. Bei Stromfluss in einem elektrischen Leiter wird stets ein Teil der elektrischen Energie in thermische Energie umgewandelt.
Der Widerstand metallischer Leiter ist temperaturabhängig. Das kann z.B. zum Bau von Metall-Widerstandsthermometern genutzt werden.

Artikel lesen

Heinrich Friedrich Emil Lenz

* 12.02.1804 in Dorpat
† 10.02.1865 in Rom

Er war ein russischer Physiker deutscher Herkunft, der in St. Petersburg als Physikprofessor tätig war und sich insbesondere mit Problemen der Elektrizitätslehre beschäftigte. Er entdeckte das nach ihm benannte lenzsche Gesetz über die Richtung des Induktionsstromes.

Artikel lesen

Lenzsches Gesetz

HEINRICH FRIEDRICH EMIL LENZ (1804-1865) entdeckte 1833 bei seinen Untersuchungen zum elektrischen Strom und zu der von MICHAEL FARADAY (1791-1867) erforschten elektromagnetischen Induktion, dass die Richtung des Induktionsstromes nicht zufällig ist. Sie steht vielmehr in ursächlichem Zusammenhang mit der jeweiligen Ursache für das Entstehen einer Induktionsspannung. Es gilt:

Der Induktionsstrom ist stets so gerichtet, dass er der Ursache seiner Entstehung entgegenwirkt.

Dieses Gesetz, das nichts anderes ist als der Energieerhaltungssatz für die elektromagnetische Induktion ist, wird nach seinem Entdecker als lenzsches Gesetz oder lenzsche Regel bezeichnet.

Artikel lesen

Lichtempfänger und Lichtsender

Lichtempfänger auf Halbleiterbasis sind Fotowiderstände, Fotodioden und Fototransistoren. Während die Fotowiderstände über ihre gesamte Ausdehnung aus einheitlich dotiertem Material bestehen, haben Fotodioden und Fototransistoren pn-Übergänge.
Lichtsender auf Halbleiterbasis sind speziell gestaltete Dioden. Sie werden Lichtemitterdioden (LED), Lumineszenzdioden oder Leuchtdioden genannt, wenn das von ihnen ausgesendete Licht eine inkohärente Strahlung darstellt. Es gibt sie für den Infrarotbereich (IRED) und für den sichtbaren Bereich des Lichtes. Senden sie dagegen kohärentes Licht aus, bezeichnet man sie als Laserdioden.

Artikel lesen

Hendrik Antoon Lorentz

* 18.07.1853 in Arnheim
† 04.02.1928 in Haarlem

Er war ein bedeutender und vielseitiger niederländischer Physiker, der u.a. eine Elektronentheorie der Elektrizitätsleitung formulierte, wichtige Vorleistungen für die Entwicklung der speziellen Relativitätstheorie erbrachte und genauer die Kraft auf bewegte Ladungsträger in magnetischen Feldern (LORENTZ-Kraft) untersuchte.

Artikel lesen

Lorentz-Kraft

Auf alle geladenen Teilchen oder Körper, die sich in einem magnetischen Feld nicht parallel zu den magnetischen Feldlinien bewegen, wirkt eine Kraft. Diese Kraft bezeichnet man nach dem niederländischen Physiker HENDRIK LORENTZ (1853-1928), der sie gegen Ende des 19. Jahrhunderts näher untersucht hat, als LORENTZ-Kraft.
Berechnungen zur LORENTZ-Kraft sind mitunter recht kompliziert, weil diese Kraft als vektorielle Größe sowohl von der Bewegungsrichtung und dem Betrag der Teilchengeschwindigkeit als auch von der Stärke und Richtung des Magnetfeldes abhängt. Allgemein gilt:
F → = Q ⋅ ( v → × B → )
Für den Sonderfall, dass Bewegungsrichtung und magnetische Feldlinien senkrecht zueinander stehen, kann man den Betrag der LORENTZ-Kraft relativ einfach experimentell untersuchen und berechnen.

Artikel lesen

Magnetfeld der Erde

Unsere Erde ist ein großer Magnet. Allerdings ist die mittlere Stärke des Magnetfeldes der Erde relativ gering. Sie beträgt nur etwa 50 mT. Trotz dieses geringen Wertes richtet sich eine frei bewegliche Magnetnadel entsprechend des Verlaufes der Feldlinien aus. Da die geografischen Pole und die Magnetpole der Erde in grober Näherung eine ähnliche Lage haben, kann die Ausrichtung einer Magnetnadel zur Bestimmung der Himmelsrichtung mithilfe eines Kompasses genutzt werden. Das Feld in der Nähe der Erdoberfläche ähnelt dem eines Stabmagneten, in größerer Entfernung treten aufgrund des Sonnenwindes erhebliche Verformungen auf.
Die Lage der Magnetpole ist nicht konstant. In großen Zeiträumen können auch Umpolungen des Erdmagnetfeldes auftreten.

Artikel lesen

Magnetische Flaschen und magnetische Linsen

Geladene Teilchen, die sich in einem Magnetfeld bewegen, werden durch dieses Magnetfeld aufgrund der dann wirkenden LORENTZ-Kraft beeinflusst. Unter geeigneten Bedingungen bilden die geladenen Teilchen geschlossene Bahnen, werden also durch das Magnetfeld in einem bestimmten Raumbereich gehalten. Man spricht dann von einer magnetischen Flasche.
Die Beeinflussung von bewegten geladenen Teilchen durch Magnetfelder kann auch genutzt werden, um Anordnungen zu schaffen, die auf Elektronen oder andere geladene Teilchen ähnlich wie eine optische Linse wirken. Man spricht dann von einer magnetischen Linse, die z.B. bei Elektronenmikroskopen oder Fernsehbildröhren angewendet wird.

Artikel lesen

Magnetschwebebahn

Bei der Magnetschwebebahn übernehmen magnetische Kräfte die Aufgaben, die bei der herkömmlichen Eisenbahn Schiene und Räder erfüllen: Sie tragen das Gewicht des Zuges, sorgen für seitliche Führung und übertragen die Antriebs- und Bremskräfte. Zu unterscheiden sind dabei drei verschiedene Techniken des magnetischen Schwebens: das elektromagnetische Schweben (EMS), das seit 1977 in Deutschland weiterentwickelt wird, das in Japan favorisierte elektrodynamische Schweben (EDS) und das permanentmagnetische Schweben (PMS).
2002 wurde der Versuchsbetrieb des in Deutschland entwickelten Transrapid auf der ersten Strecke in Schanghai aufgenommen. Geplant sind auch Strecken im Ruhrgebiet (Metrorapid) und in München als Verbindungsstrecke zwischen Flughafen und Stadtzentrum.

Artikel lesen

Magnetspeicher

Zur Speicherung von Informationen gibt es unterschiedliche Möglichkeiten. Während man bei CDs und DVDs die thermische Verformung feinster Bereiche auf einer Disc („Brennen einer CD oder einer DVD“) nutzt, wendet man bei Festplatten, Disketten unterschiedlicher Bauart, Tonbändern und Videobändern die magnetische Speicherung an. Bei Magnetspeichern wird eine dünne magnetische Schicht durch einen Schreibkopf entsprechend der einzuprägenden Informationen magnetisiert. Durch einen Lesekopf können diese Informationen wieder abgerufen werden.

Artikel lesen

Anwenden physikalischer Gesetze

Ein wichtiges Ziel der Physik ist das Anwenden physikalischer Gesetze zum Lösen von Aufgaben und Problemen, z. B. zum Erklären und Voraussagen von Erscheinungen, zum Berechnen von Größen oder zum Konstruieren technischen Geräte. Dabei gibt es immer wieder bestimmte Schritte, die durchlaufen werden müssen.

Artikel lesen

Archimedes von Syrakus

* um 287 v.Chr. Syrakus
† 212 v.Chr. Syrakus

Er war ein bedeutender griechischer Mathematiker, Physiker und Erfinder, gewann viele seiner Ergebnisse auf experimentellem Wege und wandte sie auch an. Er schuf die Grundlage der Statik und Hydrostatik und fand das Hebelgesetz.

Artikel lesen

Aristoteles

* 384 v. Chr. Stagira
† 322 v. Chr. Chalkis

Er war ein griechischer Gelehrter der Antike, systematisierte das Wissen seiner Zeit, begründete u. a. die Botanik, die Zoologie, die Logik und das Staatsrecht als Wissenschaften. ARISTOTELES war ein universeller Gelehrter und einer der bedeutendsten Denker des Altertums. Er war Erzieher ALEXANDER DES GROSSEN.

Artikel lesen

Lösen physikalischer Aufgaben mit experimentellen Mitteln (experimentelle Aufgaben)

Beim Lösen von experimentellen Aufgaben ist es erforderlich, den Wert physikalischer Größen und speziell von Konstanten und Zusammenhängen zwischen physikalischen Größen auf experimentellem Wege zu ermitteln. Dabei werden im Wesentlichen die Schritte gegangen, die für ein Experiment charakteristisch sind:

  • Vorbereitung des Experiments einschließlich Entwicklung der Experimentieranordnung,
  • Durchführung des Experiments
  • Auswertung des Experiments einschließlich Fehlerbetrachtungen oder Fehlerrechnung.
Artikel lesen

Lösen physikalischer Aufgaben durch geometrische Konstruktionen (geometrische Aufgaben)

Beim Lösen bestimmter Aufgaben (Zusammensetzung oder Zerlegung von Kräften, Zusammensetzung von Geschwindigkeiten, Zusammensetzung von Wegen) werden die physikalischen Sachverhalte in einer maßstäblichen Zeichnung dargestellt und das Ergebnis durch geometrische Konstruktion ermittelt. Aus der geometrischen Konstruktion können dann weitere Folgerungen gezogen werden. Allgemein eignet sich dieses Verfahren bei vektoriellen Größen.

Artikel lesen

Lösen physikalischer Aufgaben mithilfe grafischer Mittel

Beim Lösen solcher Aufgaben werden physikalische Zusammenhänge in Diagrammen dargestellt und diese Diagramme unter physikalischen Gesichtspunkten ausgewertet.

Artikel lesen

Lösen physikalischer Aufgaben durch inhaltlich-logisches Schließen (inhaltlich-logische Aufgaben)

Beim Lösen physikalischer Aufgaben durch inhaltlich-logisches Schließen werden die Eigenschaften proportionaler Zusammenhänge zwischen physikalischen Größen zum Ermitteln des Ergebnisses angewendet. Häufig müssen auch noch Werte physikalischer Größen unter Nutzung der physikalischen Bedeutung der Größe interpretiert werden.

Artikel lesen

Aufgabenlösen im Überblick

Das Lösen von Aufgaben oder Problemen ist eine für die Physik charakteristische komplexe Tätigkeit. Es dient einerseits der Gewinnung neuer Erkenntnisse, andererseits der Anwendung und damit der Festigung von Wissen und Können. Je nach ihrem Charakter unterscheidet man verschiedene Arten von Aufgaben. Für jede dieser Aufgabenarten lassen sich typische Lösungsschritte angeben. Für ein und dieselbe Aufgabe gibt es nicht selten unterschiedliche Lösungswege.

Seitennummerierung

  • Previous Page
  • Seite 9
  • Seite 10
  • Aktuelle Seite 11
  • Seite 12
  • Seite 13
  • Seite 14
  • Next Page

594 Suchergebnisse

Fächer
  • Physik (594)
Klassen
  • 5. Klasse (684)
  • 6. Klasse (684)
  • 7. Klasse (684)
  • 8. Klasse (684)
  • 9. Klasse (684)
  • 10. Klasse (684)
  • Oberstufe/Abitur (594)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025