Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Geladene Teilchen in elektrischen Feldern

Auf ein geladenes Teilchen wirkt im elektrischen Feld eine Kraft, die zur Beschleunigung des Ladungsträgers führt. Die Bahnkurve des Teilchens ist abhängig von der Richtung der Anfangsgeschwindigkeit. Bei einer Bewegung in Richtung oder entgegen der Richtung der Feldlinien erfolgt eine gleichmäßig beschleunigte Bewegung. Das wird z.B. genutzt, um schnelle Elektronen (einen Elektronenstrahl) zu erzeugen. Verläuft die Bewegung senkrecht zu den Feldlinien eines homogenen Feldes, dann bewegen sich die Ladungsträger auf einer parabelförmigen Bahn. Diese Ablenkung von der ursprünglichen geradlinigen Bewegung wird in Elektronenstrahlröhren zur Erzeugung von Bildern (z. B. bei Oszillografen) genutzt.

Artikel lesen

Geladene Teilchen in magnetischen Feldern

Geladene Teilchen (Elektronen, Protonen, Ionen) können sich in magnetischen Feldern bewegen und werden durch diese beeinflusst. Ursache dafür ist die LORENTZ-Kraft, die auf bewegte Ladungsträger in magnetischen Feldern wirkt und die mit der Gleichung F → L = Q ⋅   ( v → × B → ) berechnet werden kann.
Je nach der Bewegungsrichtung der Teilchen kann die LORENTZ-Kraft zu einer kreisförmigen oder einer spiralförmigen Bewegung der geladenen Teilchen führen. Bewegen sich die Teilchen parallel zu den Feldlinien des Magnetfeldes und damit in der Richtung, die die magnetische Flussdichte B hat, dann erfolgt keine Beeinflussung. In homogenen magnetischen Feldern kann die Bewegung der geladenen Teilchen relativ einfach beschrieben werden.

Artikel lesen

Generatoren

Generatoren dienen der Umwandlung von mechanischer Energie in elektrische Energie. Dabei wird das Induktionsgesetz genutzt. Fast alle Generatoren arbeiten nach dem Rotationsprinzip: Durch ein rotierendes Magnetfeld werden in fest stehenden Induktionsspulen Spannungen induziert (Innenpolmaschine) oder in rotierenden Induktionsspulen werden durch ein fest stehendes Magnetfeld Spannungen induziert (Außenpolmaschine).
Für die Elektroenergieversorgung nutzt man zumeist sinusförmigen Wechselstrom, dessen Entstehung für den elementaren Fall der gleichförmigen Rotation einer Leiterschleife in einem homogenen Magnetfeld leicht aus dem Induktionsgesetz ableitbar ist.

Artikel lesen

Generatoren zur Schwingungserzeugung

Die elektromagnetischen Schwingungen in einem Schwingkreis klingen nach einmaliger Anregung relativ schnell wieder ab, weil elektromagnetische Energie durch den ohmschen Widerstand des Leitungsdrahtes in Wärme umgewandelt und dadurch dem Schwingkreis entzogen wird. Möchte man die Schwingung aufrechterhalten, dann muss man dem Schwingkreis im Takt der Eigenschwingung und in der richtigen Phase Energie zuführen. Das geschieht in Generatoren zur Erzeugung elektromagnetischer Schwingungen, häufig mithilfe einer meißnerschen Rückkopplungsschaltung.
Eine spezielle Art von Generatoren sind Tongeneratoren, mit denen elektromagnetische Schwingungen im hörbaren Bereich erzeugt werden.

Artikel lesen

Gleichrichterschaltungen

Gleichrichterschaltungen haben die Aufgabe, aus sinusförmigen Wechselspannungen Gleichspannungen zu erzeugen. Erreichen lässt sich dies mit den unterschiedlichsten Schaltungen, die in zwei Klassen eingeteilt werden können, die der Einweg- und die der Zweiwegschaltungen. Eine exakte Klassifizierung (nach DIN) sowie die Erläuterung der wichtigsten Gleichrichterschaltungen ist Gegenstand dieses Artikels. Darüber hinaus wird an der Einpuls-Einweg-Gleichrichterschaltung exemplarisch eine grafische Methode zur Ermittlung der zeitlichen Verläufe der gleichgerichteten Spannung vorgestellt.

Artikel lesen

Grundversuche zur elektromagnetischen Induktion

Die elektromagnetische Induktion ist ein Vorgang, bei dem durch Bewegung eines elektrischen Leiters im Magnetfeld oder durch Änderung des von einem Leiter umschlossenen Magnetfeldes eine elektrische Spannung und ein Stromfluss erzeugt werden. Umfassend wird dieser Vorgang durch das Induktionsgesetz erfasst. Aus historischer Sicht wesentlich sind eine Reihe von Versuchen, die man als Grundversuche zur elektromagnetischen Induktion bezeichnet und mit denen gezeigt werden kann, unter welchen Bedingungen überhaupt eine Induktionsspannung entsteht und durch welche Faktoren der Betrag der Induktionsspannung beeinflusst wird. In dem Beitrag sind die wichtigsten Grundversuche zusammengestellt und erläutert. Sie waren letztlich die empirische Grundlage für die Formulierung des Induktionsgesetzes, das MICHAEL FARADAY 1831 fand.

Artikel lesen

Halbleiterdioden

Halbleitende Werkstoffe wie Ge, Si, GaP (Galliumphosphid), InAs (Indiumarsenid) oder InSb (Indiumantimonid) besitzen eine stark temperaturabhängige Leitfähigkeit, die allerdings nur in sehr reinen großräumigen Kristallen (Einkristalle) von Bedeutung ist.
Diese Leitung wird als Eigenleitung (intrinsic conduction) bezeichnet. Die hierbei auftretende Leitfähigkeit bleibt i.d.R. einige Zehnerpotenzen unter der von Metallen. Der Stromfluss wird durch zwei Ladungsträgerarten, die Elektronen und die Defektelektronen realisiert.
Durch gezieltes technisches Einwirken kann in einem eigenleitenden Kristall das bestehende Gleichgewicht zwischen der Zahl der negativen Elektronen und der Zahl der positiven Defektelektronen zugunsten der einen oder der anderen Ladungsträgerart verschoben werden.

Eine Halbleiterdiode ist ein elektronisches Bauelement, das aus zwei unterschiedlich dotierten Schichten desselben Grundmaterials aufgebaut ist. Sie besteht aus einem n-Halbleiter und einem p-Halbleiter sowie dem Bereich zwischen beiden Schichten, dem pn-Übergang.
Es gibt sie in vielen unterschiedlichen Bauformen. Ein wichtiger Anwendungsbereich ist der der Gleichrichtung. Darüber hinaus werden Dioden aber auch für andere Zwecke eingesetzt, z.B. als Kapazitätsdioden, als Lichtemitterdioden oder als Laserdioden.

Artikel lesen

HALL-Effekt

Geladene Teilchen (Elektronen, Protonen, Ionen), die sich in einem Magnetfeld bewegen, werden durch dieses Magnetfeld beeinflusst, wenn ihre Bewegungsrichtung nicht mit der Feldrichtung übereinstimmt. Das gilt auch für Elektronen in Leitern.
Wird ein flächenhafter stromdurchflossener Leiter senkrecht zur Driftbewegung der Elektronen von einem Magnetfeld durchsetzt, so kann zwischen Randpunkten dieses Leiters eine Spannung nachgewiesen werden. Dieser 1879 von dem amerikanischen Physiker EDWIN HERBERT HALL (1855-1938) entdeckte Effekt wird heute als HALL-Effekt bezeichnet.

Artikel lesen

Wilhelm Ludwig Franz Hallwachs

* 09.07.1859 in Darmstadt
† 20.06.1922 in Dresden

Er war ein deutscher Elektrotechniker und Physiker, der sich um die Entwicklung der technischen Physik verdient gemacht hat. Seine größte wissenschaftliche Leistung war die Entdeckung des äußeren lichtelektrischen Effekts, also des Austritts von Elektronen aus Oberflächen bei Bestrahlung mit geeignetem Licht.

Artikel lesen

Echolot

Eine Eigenschaft von Schallwellen besteht darin, dass sie an Flächen reflektiert werden. Das gilt sowohl für Schall im hörbaren Bereich als auch für Ultraschall. Diese Eigenschaft des Schalls wird in der Technik genutzt, um die Tiefe von Gewässern zu messen oder um Fischschwärme zu orten. Das dabei angewandte Verfahren wird als Echolotung bezeichnet.

In der Natur kann man Echos vor allem in den Bergen wahrnehmen. Der Effekt tritt auch unter Brücken oder in großen Räumen auf und wird dann mitunter Nachhall genannt.

Manche Tiere, z. B. Fledermäuse, nutzen das Echo zur Orientierung.

Artikel lesen

Joseph Henry

* 17.12.1797 in Albany
† 13.05.1878 in Washington

Er war ein bedeutender amerikanischer Physiker, der sich vor allem mit dem Elektromagnetismus beschäftigte und Elektromagnete für industrielle Zwecke entwickelte. Nach ihm ist die Einheit der Induktivität benannt worden.

Artikel lesen

Heinrich Hertz

* 22.02.1857 in Hamburg
† 01.01.1894 in Bonn

Er war ein deutscher Physiker, der experimentell die von dem britischen Physiker MAXWELL vorhergesagten elektromagnetischen Wellen nachwies. Er untersuchte auch deren Eigenschaften und schuf damit eine entscheidende Grundlage für die drahtlose Nachrichtenübertragung. Die Einheit der Frequenz und die bei Rundfunk und Fernsehen verwandten hertzschen Wellen sind nach ihm benannt.

Artikel lesen

Entdeckung der elektromagnetischen Induktion

Ausgangspunkt für die Entdeckung der Induktion waren Vorstellungen von der Einheit der Naturkräfte und vermutete Zusammenhänge zwischen Elektrizität und Magnetismus.
1820 bemerkte OERSTED in einem Versuch, dass eine Magnetnadel in der Nähe eines elektrischen Leiters abgelenkt wird, wenn man den Strom einschaltet. Andere Wissenschaftler, wie AMPÈRE und FARADAY, bauten die Versuche von OERSTED nach und entwickelten sie weiter. Dabei fand FARADAY 1831 die elektromagnetische Induktion.
Innerhalb von drei Monaten entwickelte er alle Grundversuche der Induktion und eine Urform eines elektrischen Generators.

Artikel lesen

Das Induktionsgesetz

Das Induktionsgesetz ist ein grundlegendes physikalisches Gesetz und die Grundlage für die Wirkungsweise solcher Geräte wie Transformatoren und Generatoren. In Worten kann man es so formulieren:
In einer Spule wird eine Spannung induziert, wenn sich das von der Spule umfasste Magnetfeld ändert. Der Betrag der Induktionsspannung ist umso größer, je schneller sich das von der Spule umfasste Magnetfeld ändert.
Eine allgemeine mathematische Formulierung des Induktionsgesetzes lautet:
U i = − N ⋅ d φ d t oder U i = − N ⋅ d ( B ⋅ A ) d t
Aus dieser allgemeinen Formulierung kann man alle wesentlichen Spezialfälle ableiten, insbesondere auch diejenigen, die der Wirkungsweise von Transformatoren und Generatoren zugrunde liegen.

Artikel lesen

Informationsübertragung mit hertzschen Wellen

Informationen stellen Mitteilungen über erfassbare Sachverhalte dar. Sie können mittels Signalen übertragen werden, wobei diese Signale recht unterschiedliche Formen haben können. Bei der Verwendung von hertzschen Wellen werden die Informationen den hertzschen Wellen in verschiedener Weise aufgeprägt, mit ihnen übertragen, dann wieder von ihnen getrennt und damit nutzbar gemacht. An eine Informationsübertragung ist eine Reihe Bedingungen zu stellen, beispielsweise:

  • Es sollen möglichst keine Elemente der Gesamtinformation verloren gehen.
  • Die geforderte Entfernung muss sicher überbrückt werden.
  • Es soll möglichst wenig Energie erforderlich sein.

In dem Beitrag wird ein Überblick über die prinzipiellen Möglichkeiten des Sendens und Empfangens hertzscher Wellen gegeben. Insbesondere werden auch verschiedene Formen der Modulation dargestellt.

Artikel lesen

Kondensatoren

Ein Kondensator ist ist elektrisches Bauelement, mit dem elektrische Ladung und damit elektrische Energie gespeichert wird. Die einfachste Form eines Kondensators ist ein Plattenkondensator, der aus zwei sich gegenüberstehenden, voneinander isolierten Metallplatten besteht, zwischen denen sich Luft befindet. Wird zwischen diesen Metallplatten eine elektrische Spannung angelegt, dann sammeln sich auf ihren Oberflächen getrennt voneinander positive und negative Ladungen an. Zwischen den Platten baut sich ein elektrisches Feld auf, in dem Feldenergie gespeichert ist. Die Kapazität eines Kondensators hängt von seinem Aufbau ab und kann in weiten Grenzen variieren. Kondensatoren können in Reihe oder parallel geschaltet werden. Sie verhalten sich im Gleichstromkreis anders als im Wechselstromkreis.

Artikel lesen

Nebengruppen

Die Nebengruppenelemente einer Periode des PSE unterscheiden sich in ihrer Elektronenkonfiguration nur durch die Besetzung der d-Niveaus. Sie werden deshalb als d-Block-Elemente bezeichnet und ähneln sich in ihren chemischen und physikalischen Eigenschaften weitaus stärker als Hauptgruppenelemente:

  1. Alle Nebengruppenelemente sind Metalle.
  2. Sie bilden vielfach farbige, stabile Komplexverbindungen, in denen sie als Elektronenpaarakzeptoren wirken.
  3. Die Elemente der mittleren Gruppen können in vielen verschiedenen Oxidationsstufen auftreten.
  4. Besonders stabil sind Atome oder Ionen, die über halb besetzte oder vollständig besetzte d-Niveaus verfügen.
     
Artikel lesen

Nitrate

Die Salze der Salpetersäure heißen Nitrate. Sie sind gekennzeichnet durch das Säurerest-Ion N O 3 − , N O 3 − − I o n e n (Nitrat-Ionen) werden durch die „Ringprobe“ nachgewiesen.

Die Nitrate finden hauptsächlich als Düngemittel in der Landwirtschaft und als Oxidationsmittel, z. B. in der Feuerwerkerei oder in chemischen Synthesen Verwendung.

Artikel lesen

Ordnungszahl und Massenzahl

Atomkerne lassen sich durch die Anzahl der Kernbausteine (Nukleonen) Proton und Neutron charakterisieren. Die Protonenzahl ist identisch mit der Ordnungszahl im Periodensystem der Elemente. Die Massenzahl ergibt sich aus Protonenzahl und Neutronenzahl. Zur übersichtlichen Kennzeichnung eines Atomkerns verwendet man die Symbolschreibweise.

Artikel lesen

Bestimmung von Oxidationszahlen

Oxidationszahlen sind formale Größen zur Beschreibung von Redoxreaktionen. Sie werden in römischen Ziffern über die Elementsymbole geschrieben. Die Änderung der Oxidationszahlen ist das charakteristische Merkmal von Redoxreaktionen.
Für die Bestimmung der Oxidationszahlen gibt es einfache Regeln. Bei komplexeren Verbindungen oder Teilchen ermittelt man die Oxidationszahlen der Atome anhand der Lewis-Formel, indem man formal eine heterolytische Bindungsspaltung durchführt.

Artikel lesen

pH-Wert

Der pH-Wert ist ein Maß für die Konzentration von Protonen in einer Lösung. Der Zahlenwert gibt die Konzentration als negativen dekadischen Logarithmus an. Je weniger freie Protonen in einer Lösung vorhanden sind, desto größer ist der pH-Wert. Ist die Protonenkonzentration in einer Lösung hoch, d.h. der pH-Wert niedrig, spricht man von einer sauren Lösung, ist der Protonenkonzentration niedrig, d.h. der pH-Wert hoch, spricht man von einer basischen Lösung. Als neutral wird ein pH-Wert von 7 angenommen. In Analogie zum pH-Wert wird auch ein pOH-Wert definiert, der die Konzentration an OH − -Ionen angibt.

Artikel lesen

Radioaktive Strahlung

Radioaktive Strahlung entsteht beim Umwandeln von instabilen Atomkernen (Radionukliden). Dabei können freigesetzt werden:

  • Alphastrahlung (doppelt positiv geladene Heliumkerne),
  • Betastrahlung (Elektronen oder Positronen),
  • Gammastrahlung (energiereiche elektromagnetische Wellen kleiner Wellenlänge)
Artikel lesen

Redoxgleichungen

Redoxgleichungen müssen wie alle Reaktionsgleichungen die Gesetze der Erhaltung der Masse und der Ladung erfüllen. Die herkömmliche Verfahrenweise zum Aufstellen von Reaktionsgleichungen ist jedoch bei komplexen Redoxreaktionen sehr zeitraubend und führt häufig zu Fehlern. Deshalb geht man beim Einrichten von Redoxgleichungen nach folgendem Schema vor:

  1. Aufstellen der Teilgleichungen für Oxidation und Reduktion,

  2. Ausgleich der Elektronenanzahl und Addition der Teilreaktionen,

  3. Kürzen der Bruttoreaktionsgleichung,

  4. Kontrolle, ob Erhaltung der Masse und der Ladung erfüllt sind.

Artikel lesen

Ernest Rutherford

* 30.08.1871 Nelson/Neuseeland
† 09.10.1937 Cambridge

RUTHERFORD war ein britischer Physiker, Professor in Montreal, Manchester und Cambridge. Er schuf die heute noch gültige Theorie des radioaktiven Zerfalls und entwickelte ein Atommodell, das wir heute als rutherfordsches Atommodell bezeichnen. 1919 realisierte er die erste künstliche Kernumwandlung.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form

  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )

oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Seitennummerierung

  • Previous Page
  • Seite 106
  • Seite 107
  • Aktuelle Seite 108
  • Seite 109
  • Seite 110
  • Seite 111
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025