Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Massenspektrografie

Viele Elemente bestehen aus Isotopengemischen. Auch bei Kernreaktionen entstehen unterschiedliche Isotope. Sie unterscheiden sich in ihren Massen zum Teil nur geringfügig. Die Methode, Teilchen nach ihrer unterschiedlichen Masse voneinander zu trennen und damit zu identifizieren, bezeichnet man als Massenspektrografie. Die entsprechenden Geräte werden als Massenspektrografen oder Massenspektrometer bezeichnet. Den ersten Massenspektrografen entwickelte der britische Physiker und Chemiker FRANCIS WILLIAM ASTON (1877-1945) im Jahr 1919.

Artikel lesen

James Clerk Maxwell

* 13.06.1831 in Edinburgh
† 05.11.1879 in Cambridge

Er war einer der vielseitigsten und bedeutendsten Physiker des 19. Jahrhunderts und entwickelte u.a. in Anknüpfung an die Arbeiten von MICHAEL FARADAY (1791-1867) eine Theorie der elektromagnetischen Felder, entdeckte den transversalen Charakter elektromagnetischer Wellen und erkannte, dass auch Licht als elektromagnetische Welle aufgefasst werden kann. Darüber hinaus formulierte er eine statistische Beschreibung der Teilchenbewegung in Gasen. Weiterhin beschäftigte er sich mit der Farbenlehre und mit der Theorie von Steuerungs- und Regelungsmechanismen.

Artikel lesen

Alexander Meißner

* 14.09.1883 in Wien
† 03.01.1958 in Berlin

Er war ein deutscher Physiker und Hochfrequenztechniker und beschäftigte sich insbesondere mit elektromagnetischen Wellen und deren Anwendungen. Bekannt wurde er vor allem durch die nach ihm benannte meißnersche Rückkopplungsschaltung zur Erzeugung hochfrequenter und ungedämpfter elektromagnetischer Schwingungen.

Artikel lesen

Robert Andrews Millikan

* 22.03.1868 in Morrison (Illinois)
† 19.12.1953 in San Marino (Kalifornien)

Er war ein vielseitiger und bedeutender amerikanischer Physiker. Seine größte wissenschaftliche Leistung ist die experimentelle Präzisionsbestimmung der Elementarladung mit der Tröpfchenmethode (MILLIKAN-Versuch), für die er 1923 den Nobelpreis für Physik erhielt. MILLIKAN beschäftigte sich darüber hinaus mit ultravioletter Strahlung, Röntgenstrahlung und kosmischer Strahlung. Außerdem erfüllte er als Präsident des California Institute of Technology in Pasadena und der amerikanischen physikalischen Gesellschaft wichtige wissenschaftsorganisatorische Aufgaben.

Artikel lesen

Millikan-Versuch zur Bestimmung der Elementarladung

In der zweiten Hälfte des 19. Jahrhunderts wurde die Existenz von Elektronen nachgewiesen und der Begriff Elektron in die Physik eingeführt. Bekannt war auch, dass Elektronen negativ geladen sind. Die genaue Bestimmung dieser Ladung, der Elementarladung, gelang erstmals in den Jahren 1909-1913 dem amerikanischen Physiker ROBERT ANDREWS MILLIKAN (1868-1953). Für seine Präzisionsbestimmungen der Elementarladung erhielt MILLIKAN 1923 den Nobelpreis für Physik. Der Versuch selbst, der die Bezeichnung MILLIKAN-Versuch trägt, gehört zu den grundlegenden Experimenten der Physik.

Artikel lesen

Hans Christian Oersted

* 14.08.1777 in Rudkoebing
† 09.03.1851 in Kopenhagen

Er war ein dänischer Physiker und Chemiker und war als Professor für Physik in Kopenhagen tätig. Im Jahre 1820 entdeckte er die magnetische Wirkung elektrischer Ströme und damit den Zusammenhang zwischen Elektrizität und Magnetismus.

Artikel lesen

Georg Simon Ohm

* 16.03.1789 in Erlangen
† 06.07.1854 in München

Er war deutscher Mathematiker und Physiker, arbeitete als Lehrer für Mathematik und Physik und in seinen letzten Lebensjahren als Professor an der Universität München. Seine wichtigste Entdeckung war ein Gesetz der Elektrizitätslehre zum Zusammenhang zwischen Spannung und Stromstärke, das wir heute als ohmsches Gesetz kennen.

Artikel lesen

Flussdelfinartige

Delfine bilden eine eigene Familie (Delphinidae) innerhalb der Wale. Mit 35 lebenden Arten sind die Delfine sogar die bei Weitem größte Walfamilie.

Obwohl man alle Waltiere in eine einzige biologische Ordnung (Cetacea) stellt, unterscheidet man zwei Gruppen oder Unterordnungen mit mehr als 83 Arten, und zwar vor allem aufgrund der unterschiedlichen Ausstattung der Mundwerkzeuge:

  • Die erste Gruppe bilden die Bartenwale (Mysticeti, Verbreitungsgebiet: alle Meere, 15 Arten, z. B. Blauwal, Buckelwal, Finnwal, Seiwal, Grönlandwal, Grauwal, Zwergwal). Sie zeichnen sich durch folgende Merkmale aus: freie Halswirbel, Reste von Hinterextremitäten, zwei getrennte äußere Nasenöffnungen, 6–33 m lang, Gewicht bis zu 136 Tonnen, großer Kopf, Unterkiefer länger als Oberkiefer, Zähne sind nur embryonal ausgebildet, Barten, Plankton- oder Fischfresser.
  • Die zweite Gruppe sind die Zahnwale (Odontoceti, ca. 73 Arten, z. B. Pottwal, Schwertwal, Narwal, Beluga, Schnabelwale, alle Delfine und die kleinen Schweinswale). Der Name „Zahnwal“ stammt daher, dass die Vertreter dieser Gruppe über Zähne verfügen. Außerdem zeichnen sie sich durch ein hoch entwickeltes Gehirn aus, sie besitzen einen asymmetrischen Schädel und besitzen nur eine äußere Nasenöffnung.

Alle Delfine und Schweinswale gehören zur Gruppe der Zahnwale. Der Name „Delfin“ wird hauptsächlich für zwei Gruppen innerhalb der Gruppe der Zahnwale verwendet: die Familie der Flussdelfine (Platanistidae) und die „eigentlichen Delfine“, Vertreter der Familie Delphinidae.

Artikel lesen

Operationsverstärker

Operationsverstärker (OPV) sind mehrstufige Verstärker mit hoher Spannungsverstärkung, die ursprünglich in diskreter Schaltungstechnik zur Realisierung mathematischer Verknüpfungen zwischen dem Ausgangs- und den Eingangssignalen genutzt wurden. Mit dem Aufkommen der digitalen Rechentechnik haben sie bis auf wenige Spezialanwendungen als allein nutzbare mathematische Verknüpfungsstrukturen ihre Bedeutung verloren.
Heute werden Operationsverstärker in integrierter Schaltungstechnik realisiert. Dabei hängt ihr Betriebsverhalten fast ausschließlich von der Außenbeschaltung ab und verlangt im Prinzip keine Kenntnis ihres Innenaufbaus. Ihr Einsatzbereich umfasst das gesamte Gebiet der Elektronik: Sie werden heute als universell nutzbare Verstärker ebenso verwendet wie zur Schwingungserzeugung und Impedanzwandlung, als AC–DC–Wandler in der Messtechnik oder als Präzisionsgleichrichter.

Artikel lesen

Parallelschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Parallelschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Parallelschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

1 Z = 1 R 2 + ( 1 X C − 1 X L ) 2 oder 1 Z = 1 R 2 + ( ω ⋅ C − 1 ω ⋅ L ) 2

Artikel lesen

Physikalische Felder im Vergleich

Elektrische Felder, magnetische Felder und Gravitationsfelder sind dadurch gekennzeichnet, dass auf Körper mit bestimmten Eigenschaften, die sich in ihnen befinden, Kräfte ausgeübt werden. Alle drei Arten von Feldern lassen sich mithilfe des Modells Feldlinienbild beschreiben. Für jedes der Felder gibt es feldbeschreibende Größen, die teilweise in analoger Weise definiert sind. Darüber hinaus gibt es zwischen diesen drei Arten von Feldern weitere Gemeinsamkeiten, aber auch deutliche Unterschiede.

Artikel lesen

Physik und Medizin

Besondere Bedeutung hat die Anwendung physikalischer Erkenntnisse in der Medizin bei bildgebenden Diagnoseverfahren. Dazu gehören:

  • Röntgenfotografie,
  • Computertomografie,
  • Szintigrafie,
  • Ultraschallaufnahme,
  • Magnetresonanz-Tomografie.

Diese Verfahren sind in dem Artikel ausführlich dargestellt.

Artikel lesen

Piezoelektrischer Effekt

Quarzkristalle bestehen aus sechseckigen Waben, deren Eckpunkt abwechselnd positive und negative Ladungen tragen. Wird ein solcher Kristall mechanisch belastet, so kommt es zu einer Verschiebung der äußeren Ladungen und damit zu einer unterschiedlichen Aufladung der beiden äußeren Flächen. Dieser von den Gebrüdern CURIE entdeckte Effekt wird als piezoelektrischer Effekt bezeichnet. Genutzt werden kann er z.B. zum Bau von Drucksensoren oder Kraftsensoren.
Bringt man umgekehrt einen Quarzkristall zwischen die Platten eines geladenen Kondensators, so kommt es infolge der coulombschen Kräfte zu einer Deformierung des Kristalls. Dieser reziproke piezoelektrische Effekt kann z.B. zur Schwingungserzeugung genutzt werden. Man spricht dann von einem Schwingquarz.

Artikel lesen

Reihenschaltung von Wechselstromwiderständen

Unter Wechselstromwiderständen versteht man ohmsche, induktive und kapazitive Widerstände. Für die Reihenschaltung solcher Widerstände gelten im Wechselstromkreis andere Gesetze als für Widerstände im Gleichstromkreis. Der Gesamtwiderstand Z, der auch als Scheinwiderstand bezeichnet wird, kann bei Reihenschaltung von Wechselstromwiderständen berechnet werden mit der Gleichung:

Z = R 2 + ( X L − X C ) 2 oder Z = R 2 + ( ω ⋅ L − 1 ω ⋅ C ) 2

Für die Spannungsverteilung gilt, dass die Summe der Teilspannungen größer ist als die Spannung der anliegenden Spannungsquelle.

Artikel lesen

Der elektromagnetische Schwingkreis

Als Schwingkreis bezeichnet man im einfachsten Fall eine Anordnung eines Kondensators und einer Spule in einem geschlossenen Stromkreis. Durch Anlegen einer äußeren Wechselspannung kann ein Schwingkreis zu elektromagnetischen Eigenschwingungen angeregt werden. Bei diesen Schwingungen wandeln sich beständig elektrische Feldenergie im Kondensator und magnetische Feldenergie an der Spule ineinander um.

Artikel lesen

Elektromagnetische Schwingungen

Als Schwingung bezeichnet man eine zeitlich periodische Änderung einer oder mehrerer physikalischer Größen um einen bestimmten Mittelwert. Handelt es sich bei den physikalischen Größen, die sich periodisch ändern, um die Feldstärke eines elektrischen und eines magnetischen Feldes, dann spricht man von einer elektromagnetischen Schwingung. Da ein zeitlich veränderliches elektrisches Feld immer ein zeitlich veränderliches magnetisches Feld hervorruft, gibt es keine Schwingungen, bei denen sich ausschließlich ein elektrisches oder ausschließlich ein magnetisches Feld periodisch ändern würde.

Artikel lesen

Selbstinduktion und Induktivität

Eine stromdurchflossene Spule wird von einem Magnetfeld durchsetzt und ist auch von diesem Feld umgeben. Bei konstanter Stromstärke ist dieses Feld zeitlich konstant. Verändert sich die Stromstärke, so verändert sich auch die Stärke des Magnetfeldes, das von der Spule umschlossen wird. Damit wird nach dem Induktionsgesetz in der felderzeugenden Spule selbst eine Spannung induziert. Diese Erscheinung wird als Selbstinduktion, die entstehende Spannung als Selbstinduktionsspannung bezeichnet. Der Bau der Spule, der für den Betrag der Induktionsspannung eine erhebliche Rolle spielt, wird durch die Größe Induktivität charakterisiert.

Artikel lesen

Sensoren

Sensoren sind Bauelemente oder Schaltungen, die die Aufgabe haben, ein nichtelektrisches Eingangssignal in ein elektrisches Ausgangssignal umzuwandeln. Die Umwandlung von nichtelektrischen Größen (z.B. Temperatur, Beleuchtungsstärke, Kraft, magnetische Feldstärke) in Spannungen bzw. Stromstärke wird genutzt, um physikalische Größen zu messen, Anlagen zu steuern oder Räume und Anlagen zu überwachen. Je nachdem, welche nichtelektrischen physikalischen Größen die Sensoren beeinflussen, unterscheidet man z.B. zwischen Temperatursensoren, optischen Sensoren, Kraftsensoren oder Magnetfeldsensoren.

Artikel lesen

Der Gewöhnliche Grindwal

Der Gewöhnliche Grindwal gehört in die Unterordnung Odontoceti (Zahnwale) und in die Familie: Delphinidae.
Wie auch die Schwertwale gehören die Grindwale in die Familie der Delfine. Sie sind pechschwarz oder dunkelgrau mit einem grauen oder weißen diagonalen Streifen hinter jedem Auge. Die Stirnregion (Melone) der Tiere ist rundlich. Ihre Kopfform erinnerte frühere Walfänger an schwarze Kochtöpfe, daher der englische Name: „Pothead (= Kochtopfkopf) Whale“!

Artikel lesen

Werner von Siemens

* 13.12.1816 in Lenthe bei Hannover
† 06.12.1892 in Charlottenburg bei Berlin

Er war deutscher Physiker, Techniker und Unternehmer. Seine bedeutendste wissenschaftliche Leistung war die Entdeckung des dynamoelektrischen Prinzips und damit einer der Grundlagen für den Bau und die Wirkungsweise aller modernen Generatoren. Wesentlich beteiligt war er am Bau großer Telegrafenlinien in Deutschland und in anderen Ländern. Unter der Leitung von Siemens entstand die erste Elektrolokomotive, der erste elektrische Aufzug und die erste elektrische Straßenbahn. Die von ihm mitbegründete Firma Siemens & Halske war Ende des 19. Jahrhunderts eines der führenden Unternehmen der Elektroindustrie in der Welt.

Artikel lesen

Elektrische Spannung

Die elektrische Spannung gibt an, wie stark der Antrieb des elektrischen Stromes ist.

Formelzeichen:
Einheit:
U
ein Volt (1 V)
Artikel lesen

Spannungen in Stromkreisen

Die elektrische Spannung gibt an, wie stark der Antrieb des elektrischen Stromes ist. Sie wird in der Einheit Volt gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Die Spannung, die an den einzelnen Bauelementen anliegt, hängt von der Art der Schaltung und vom elektrischen Widerstand des betreffenden Bauelements ab.

Artikel lesen

Spektrum elektromagnetischer Wellen

Unter dem Spektrum elektromagnetischer Wellen, auch elektromagnetisches Spektrum genannt, versteht man die Gesamtheit aller elektromagnetischen Wellen. Zu diesem Spektrum elektromagnetischer Wellen gehören u. a. das sichtbare Licht, das infrarote und ultraviolette Licht, die bei Rundfunk und Fernsehen genutzten hertzschen Wellen, die Röntgenstrahlung und die Gammastrahlung, die beispielsweise bei Kernprozessen freigesetzt wird.

Artikel lesen

Stoffe im Magnetfeld

Alle Stoffe werden durch magnetische Felder beeinflusst. Umgekehrt gilt auch: Alle Stoffe beeinflussen magnetische Felder. Diese Beeinflussung ist aber sehr unterschiedlich. Während sogenannte diamagnetische Stoffe (z.B. Wasser, Gold, Glas) und paramagnetische Stoffe (z.B. Aluminium, Platin, Luft) kaum zu einer Veränderung magnetischer Felder führen, bewirken ferromagnetische Stoffe (z.B. Eisen, Cobalt, Nickel) eine zum Teil erhebliche Verstärkung und Bündelung eines Magnetfeldes. Darüber hinaus lassen sich ferromagnetische Stoffe selbst magnetisieren. Dabei wird zwischen magnetisch weichen und magnetische harten Stoffen differenziert. Diese Unterscheidung ist vor allem im Hinblick auf Anwendungen von großer Bedeutung.

Artikel lesen

Elektrische Stromstärke

Die elektrische Stromstärke gibt an, wie viel elektrische Ladung sich in jeder Sekunde durch den Querschnitt eines elektrischen Leiters bewegt.

Formelzeichen:
Einheit:
I
ein Ampere (1 A)

 

Seitennummerierung

  • Previous Page
  • Seite 234
  • Seite 235
  • Aktuelle Seite 236
  • Seite 237
  • Seite 238
  • Seite 239
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025