Direkt zum Inhalt

17 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Prozentsätze, Berechnen

Prozentsätze können mit der Formel p % = W G   b z w .   p = W G ⋅ 100 berechnet werden (p%: Prozentsatz; G: Grundwert;
W: Prozentwert).

Artikel lesen

Tabellenkalkulation, grafische Darstellung

Zu den hervorgehobenen Fähigkeiten einer Tabellenkalkulation gehört das Zeichnen von Diagrammen und so auch die grafische Darstellung von Funktionen. Obwohl die unterschiedlichen Kalkulationsprogramme in den Grundfunktionen übereinstimmen, können sie sich in Bezeichnungen und auch in einzelnen Schrittfolgen durchaus voneinander unterscheiden. Die nachfolgenden Beschreibungen beziehen sich deshalb auf die Tabellenkalkulation MS EXCEL.
Zur grafischen Darstellung Funktion f ( x ) = 2 x + 1 x 2 + 3 wird zuerst eine Wertetabelle aufgestellt. Mit den Zahlenpaaren der Tabelle wird dann ein Diagramm erstellt.

Artikel lesen

Intervallschachtelung

Beim Bestimmen der Lösung einer Gleichung mittels Intervallschachtelung wird das Intervall so verkleinert, dass die Nullstelle der entsprechenden Funktion in dem verkleinerten Intervall liegt. Dieses Vorgehen wird wiederholt, bis das Intervall so klein ist, dass ein Wert aus dem Intervall als hinreichend genaue Näherung für die Nullstelle betrachtet werden kann.

Artikel lesen

Äquivalenzumformungen

Gleichungen bzw. Ungleichungen mit demselben Grundbereich, die die gleiche Lösungsmenge haben, heißen zueinander äquivalent.

Die Lösungsmenge einer Gleichung ändert sich nicht, wenn

  • die Seiten einer Gleichung vertauscht werden,
  • auf beiden Seiten einer Gleichung derselbe Term addiert oder subtrahiert wird,
  • beide Seiten einer Gleichung mit demselben Term multipliziert werden,
  • beide Seiten einer Gleichung durch denselben Term dividiert werden.

Beim Multiplizieren bzw. Dividieren mit einem bzw. durch einen Term darf dieser für keine Zahl aus der Grundmenge den Wert null annehmen.

Artikel lesen

Primzahlen

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl .
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.

Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Der Beweis dafür ist einfach und wird indirekt geführt:
Man nimmt an, pn  sei die größte Primzahl.
Nun bildet man die Zahl z als Produkt aller bekannten Primzahlen,
z235...pn . Für die Zahl z + 1 gilt nun z + 1  1 mod aller pi , d. h. z + 1 ist durch keine der bekannten Primzahlen teilbar. Damit ist z + 1 entweder eine Primzahl (natürlich größer als pn ) oder sie enthält eine Primzahl als Teiler, die aber auch größer als pn  sein muss, oder wir haben eine neue Primzahl gefunden, die kleiner als pn  ist. Also war die Annahme falsch und es gibt keine größte Primzahl.

In der Folge der nach ihrer Größe geordneten Primzahlen gibt es aber auch Lücken beliebiger Länge.

Auch dies ist einfach zu beweisen:
Man bildet das Produkt p aller Zahlen von 2 bis n: p234...n 
Damit ist p + 2 teilbar durch 2; p + 3 teilbar durch 3, ... , p + n teilbar durch n.
Die aufeinanderfolgenden Zahlen p + 2, p + 3, p + 4 bis p + n sind damit allesamt keine Primzahlen, man hat also eine Lücke von der Länge n – 1.

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl.
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.
Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Artikel lesen

Francis Galton

FRANCIS GALTON (1822 bis 1911), englischer Naturforscher und Schriftsteller
* 16. Februar 1822 Birmingham
† 17. Januar 1911 Haslemere

GALTON war besonders als Anthropologe tätig, er gilt u. a. als Begründer der Daktyloskopie. Zudem konstruierte er die nach ihm benannte Galton-Pfeife für Töne im oberen Frequenzbereich bzw. im Bereich des Ultraschalls.
Mit seinem Namen verbunden ist das sogenannte Galton-Brett, das zur Demonstration der Binomialverteilung verwendet wird.

Artikel lesen

Simulation, Zufallsexperimente

Tabellenkalkulationen und Computeralgebrasysteme (CAS) eignen sich auch als Hilfsmittel zur Simulation realer Vorgänge. Mithilfe eines integrierten Zufallszahlengenarators ist es möglich, verschiedene Zufallsexperimente zu simulieren und mathematisch auszuwerten.

Artikel lesen

Quader

Ein Quader ist ein gerades Prisma mit paarweise zueinander kongruenten Rechtecksflächen. Ein Quader hat sechs Begrenzungsflächen, zwölf Kanten und acht Ecken.

Artikel lesen

Funktionen, y = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Funktionsgleichung, Ermitteln

Eine lineare Funktion ist durch zwei ihrer Wertepaare bzw. durch zwei Punkte ihres Graphen eindeutig bestimmt.
Ist eines des gegebenen Wertepaare das Paar (0; 0), verläuft der Graph der Funktion also durch den Koordinatenursprung, so ist das Ermitteln der Gleichung besonders einfach.

Artikel lesen

Parkettierung

Unter Parkettierung versteht man das lückenlose Auslegen einer Fläche mit Figuren. Treten die Muster regelmäßig auf, so spricht man von einer regulären Parkettierung. Die einfachsten Formen für Parkettierung erhält man, wenn man regelmäßige Vielecke aneinanderlegt.

Artikel lesen

Rechteck


Ein Parallelogramm mit einem rechten Winkel ist ein Rechteck.
Für das Rechteck gilt demzufolge:

  • Die gegenüberliegenden Seiten sind gleich lang und zueinander parallel.
  • Benachbarte Seiten sind rechtwinklig zueinander.
  • Alle vier Innenwinkel sind gleich groß. Sie betragen 90°.
  • Die Diagonalen sind gleich lang und halbieren einander.
Artikel lesen

Sehnenviereck

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck.
Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:
Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

Artikel lesen

Gleichungen, Lösen

Treten Variablen in einer Gleichung auf, so werden diese erst dann zu einer wahren oder falschen Aussage, wenn die Variablen mit Zahlen oder Größen aus einer Grundmenge belegt werden.
Das Bestimmen aller Zahlen, die die Gleichung zu einer wahren Aussage machen, heißt Lösen der Gleichung. Jede solche Zahl heißt Lösung und alle diese Zahlen zusammen bilden die Lösungsmenge der Gleichung. Die Lösungsmenge wird mit L bezeichnet.

Artikel lesen

Erweitern und Kürzen

Beim Erweitern von Brüchen werden Zähler und Nenner mit der gleichen von 0 und 1 verschiedenen Zahl multipliziert.
Beim Kürzen von Brüchen werden Zähler und Nenner durch die gleiche von 0 und 1 verschiedene Zahl dividiert.
Im Berechnungsbeispiel können beliebige gemeine Brüche erweitert oder gekürzt werden.

Artikel lesen

Gebrochene Zahlen, Rechnen

Im Bereich ℚ + der Brüche (gebrochene Zahlen) sind die Addition, Multiplikation und die Division (außer durch 0) uneingeschränkt ausführbar. Die Subtraktion zweier Brüche liefert nur dann wieder einen Bruch, wenn der Subtrahend nicht größer als der Minuend ist.
Das Rechenbeispiel umfasst die Grundrechenarten für zwei Brüche.

Artikel lesen

Natürliche Zahlen, Rechnen

Die Addition und ihre Umkehrung, die Subtraktion sowie die Multiplikation und ihre Umkehrung, die Division, sind die sogenannten vier Grundrechenarten.
Dabei sind Addition und Subtraktion die Rechenarten erster Stufe, Multiplikation und Division sind die Rechenarten zweiter Stufe.
Das interaktive Rechenbeispiel umfasst die Grundrechenarten für zwei und mehr natürliche Zahlen. In allen Beispielen können die gegebenen Ausgangswerte durch beliebige eigene Werte ersetzt werden, man erhält jeweils das neue Resultat.

17 Suchergebnisse

Fächer
  • Mathematik (17)
Klassen
  • 5. Klasse (17)
  • 6. Klasse (17)
  • 7. Klasse (17)
  • 8. Klasse (17)
  • 9. Klasse (17)
  • 10. Klasse (17)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025