Direkt zum Inhalt

884 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Additionstheoreme für Winkelfunktionen

Als Additionstheoreme für Winkelfunktionen werden Formeln bezeichnet, durch die die Funktionswerte von Summen und Differenzen von Winkeln auf die Werte der trigonometrischen Funktionen einzelner Winkel zurückgeführt werden.

Artikel lesen

Areafunktionen (inverse Hyperbelfunktionen)

Da die hyperbolischen Funktionen über ihrem Definitionsbereich (bzw. über einem Teilbereich von diesem) monoton sind, existieren ihre Umkehrfunktionen. Diese werden als Areafunktionen bezeichnet. Sie lassen sich mithilfe des natürlichen Logarithmus darstellen.

Artikel lesen

Betragsfunktion

Die Betragsfunktion ist ein Beispiel für eine stückweise erklärte stetige Funktion.

Artikel lesen

Differenzialrechnung, Grundlagen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Grundlagen der Differenzialrechnung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Peter Gustav Lejeune Dirichlet

* 13. Februar 1805 Düren
† 5. Mai 1859 Göttingen

PETER GUSTAV LEJEUNE DIRICHLET lehrte in Berlin und später als Nachfolger von GAUSS in Göttingen.
Er arbeitete vor allem auf den Gebieten der Analysis sowie der Zahlentheorie. Speziell mit seinem Namen verbunden ist der dirichletscher Primzahlsatz.

Artikel lesen

Einkommensteuerfunktion

Nach dem Einkommensteuergesetz (EStG) sind in der Bundesrepublik Deutschland alle Personen, die ihren Wohnsitz oder gewöhnlichen Aufenthalt im Inland haben, unbeschränkt mit sämtlichen Einkünften steuerpflichtig.

Die Besteuerung im Einzelnen wird durch das EStG geregelt. Hier ist auch festgelegt, wie sich aus den Gesamteinkünften das zu versteuernde Einkommen ergibt. Dies ist im Allgemeinen geringer als die Summe der Einkünfte, weil z.B. Vorsorgeaufwendungen, Werbungskosten und steuerfreie Einnahmen (wie Arbeitslosengeld, Altersrenten bis auf eine Ertragsanteil) abgezogen werden können.

Für die Praxis stehen detaillierte Einkommensteuertabellen zur Verfügung, aus denen die für ein bestimmtes Einkommen zu zahlende Steuer direkt abgelesen werden kann. Hinter diesen Tabellen steht die sogenannte Steuerfunktion.

Artikel lesen

Leonhard Euler

* 15. März 1707 Basel
† 18. September 1783 St. Petersburg

LEONHARD EULER war einer der produktivsten Wissenschaftler, was sowohl Fülle und Bedeutsamkeit als auch Vielseitigkeit seiner Beiträge angeht. Zwar gilt er vor allem als Mathematiker, doch hat er unter Nutzung der Mathematik, insbesondere der analytischen Methode, auch andere wissenschaftliche Gebiete (Mechanik, Planetenbewegung, Strömungslehre, Optik u.a.) erfolgreich bearbeitet.
Seine mathematischen Arbeiten beschäftigten sich vor allem mit Problemen der Analysis und der Zahlentheorie.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0   ;   a ≠ 1 )
heißen Exponentialfunktionen.
Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

Artikel lesen

Darstellung von Funktionen

Für die Darstellung oder Beschreibung von Funktionen gibt es verschiedene Möglichkeiten.
Sind Definitions- und Wertebereich Mengen reeller Zahlen (handelt es sich also um reelle Funktionen), so kommen vor allem folgende Varianten in Frage:

  • Angabe der (geordneten) Paare einander zugeordneter Elemente aus Definitions- und Wertebereich;
  • Beschreibung der Zuordnungsvorschrift in Worten (Wortvorschrift; verbale Beschreibung);
  • Angabe einer die Zuordnung vermittelnden Gleichung y = f ( x ) ;
  • Darstellung der einander zugeordneten Elemente in einer Wertetabelle;
  • Beschreibung durch grafische Darstellungen, z.B. durch ein Pfeildiagramm oder durch Deuten der Zahlenpaare als die Koordinaten von Punkten in einem kartesischen Koordinatensystem (wodurch man einen Graphen der Funktion erhält)

Neben den oben angeführten Darstellungsarten für Funktionen nutzt man auch die sogenannte Parameterdarstellung. Diese ist dadurch charakterisiert, dass sowohl die Variable x als auch die Variable y jeweils für sich durch eine Funktionsgleichung beschrieben werden, die einen (gemeinsamen) Parameter t als unabhängige Variable enthält.

Artikel lesen

Ganzrationale Funktionen

Eine Funktion f , deren Funktionsterm ein Polynom ist, heißt ganzrationale Funktion (bzw. Polynomfunktion).
Ganzrationale Funktionen haben die folgende Form:
  f ( x ) = a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0           ( mit        n ∈ ℕ        und        a i ∈ ℝ )
Ist a n ≠ 0 , so hat f den Grad n .

Artikel lesen

Funktionen, Ganzrationale

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ganzrationale Funktionen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Mengen, Darstellung

Mengen lassen sich in beschreibender oder in aufzählender Form angeben.
Ist x ein Element der Menge M, so schreibt man x ∈ M .
Ist x kein Element der Menge M, so schreibt man x ∉ M .

Artikel lesen

Eratosthenes

ERATOSTHENES VON KYRENE (etwa 276 bis etwa 195 v. Chr.), griechischer Mathematiker und Geograf
* 276 v. Chr. Cyrenaika
† 195 v. Chr.

Der aus der Cyrenaika (einem Küstengebiet des heutigen Libyen) stammende ERATOSTHENES verbrachte die meiste Zeit seines Lebens in Alexandria. Er war vielseitig gebildet, verfasste literaturgeschichtliche und sprachwissenschaftliche Schriften und soll die chronologische Zählung nach Olympiaden angeregt haben. Von seinen Leistungen sind besonders die folgenden zu erwähnen: das Problem der Würfelverdopplung, die Ermittlung der Primzahlen sowie die Berechnung des Erdumfangs.

Artikel lesen

Diagonalverfahren

Obwohl die Menge der gebrochenen Zahlen unendlich und überall dicht ist, kann man die gebrochenen Zahlen eindeutig den natürlichen Zahlen zuordnen, man kann sie abzählen.
Die Menge ℚ + der gebrochenen Zahlen ist abzählbar. Dies geschieht nach dem sogenannten cantorschen Diagonalverfahren (benannt nach GEORG CANTOR, 1845 bis 1918).

Artikel lesen

Richard Dedekind

RICHARD DEDEKIND (1831 bis 1916), deutscher Mathematiker
* 06. Oktober 1831 Braunschweig
† 12. Februar 1916 Braunschweig

RICHARD DEDEKINDs Hauptinteressen lagen auf dem Gebiet der algebraischen Zahlentheorie. Insbesondere wurde er durch seine theoretische Fundierung der reellen (irrationalen) Zahlen mithilfe des sogenannten dedekindschen Schnittes bekannt.

Artikel lesen

Fibonacci

LEONARDO FIBONACCI VON PISA (etwa 1180 bis 1250), italienischer Mathematiker

LEONARDO VON PISA (auch FIBONACCI) gilt als der erste europäische „Fachmathematiker“ des Mittelalters. Er behandelte vor allem zahlentheoretische Probleme, wobei die von ihm angegebenen Lösungsverfahren über die Kenntnisse des arabischen und auch des griechischen Kulturkreises hinausgingen.

Artikel lesen

Hypergeometrische Verteilung

Werden einer Urne mit genau N Kugeln (davon M weiße und N − M rote) genau n Kugeln „auf gut Glück“ entnommen und gibt die Zufallsgröße X die Anzahl der dabei herausgegriffenen weißen Kugeln an, so ist X hypergeometrisch verteilt, wenn die Kugeln ohne Zurücklegen entnommen werden, - im Unterschied zur Entnahme mit Zurücklegen.
Bevorzugtes Anwendungsgebiet der hypergeometrischen Verteilung ist die statistische Qualitätskontrolle.

Artikel lesen

Die verallgemeinert-hypergeometrische Verteilung

Der hypergeometrischen Verteilung H N ;   M ;   n liegt ein Urnenmodell mit Kugeln von (genau) zwei verschiedenen Farben zugrunde. Verallgemeinert man diese Konstellation auf (genau) r mit r ∈ ℕ \ { 0 ;   1 } verschiedene Farben, so hat man es mit verallgemeinert-hypergeometrischen Zufallsgrößen zu tun.

Artikel lesen

Vierfeldertafeln

Beim Berechnen der Wahrscheinlichkeiten von Ereignissen ist es oft zweckmäßig, sich die entsprechenden Wahrscheinlichkeiten mittels einer Vier- oder Mehrfeldertafel zu veranschaulichen.
In diesem Zusammenhang geht es immer um eine Zerlegung der Ergebnismenge Ω in Ereignisse, von denen bei jeder Realisierung des entsprechenden zufälligen Vorganges stets genau eines eintritt.

Artikel lesen

Bedingte Wahrscheinlichkeit

Der Grad der Gewissheit über das Eintreten eines zufälligen Ereignisses A wird durch seine Wahrscheinlichkeit P ( A ) angegeben.
Liegt jedoch die Information über das Eintreten eines Ereignisses B vor, so kann diese die Bewertung der Eintrittschancen von A verändern, was durch die bedingte Wahrscheinlichkeit P B ( A ) beschrieben wird.

Artikel lesen

Additionssatz für Wahrscheinlichkeiten

Für zwei beliebige Ereignisse A ,   B         ( m i t       A ,   B ⊆ Ω ) gilt:
  P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )
Dieser Additionssatz kann auf drei und mehr Ereignisse verallgemeinert werden.
Spezialfälle des Additionssatzes ergeben sich für unvereinbare bzw. unabhängige Ereignisse A und B.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Rechenregeln für Wahrscheinlichkeiten und ihre Beweise

Für das Rechnen mit Wahrscheinlichkeiten existieren grundlegende Regeln, die aus dem kolmogorowschen Axiomensystem ableitbar sind.
Diese Beweise dieser Rechenregeln gewähren Einblicke in wichtige stochastische Beweismechanismen. So besteht eine häufig angewandte Beweisidee in der Zerlegung eines Ereignisses in zwei geeignete (unvereinbare) Ereignisse.

Artikel lesen

Geometrische Wahrscheinlichkeit

Schon sehr früh in der Geschichte der Wahrscheinlichkeitstheorie hat man sich mit dem Problem des zufälligen Werfens bzw. der zufälligen Auswahl eines Punktes auf bzw. aus einem endlichen Flächenstück beschäftigt. Das mutmaßlich älteste Beispiel geht auf ISAAC NEWTON (1643 bis 1727) zurück. Im 18. Jahrhundert wurde dann der Begriff geometrische Wahrscheinlichkeit eingeführt, da es sich um Zufallsexperimente handelt, deren Versuchsausgänge geometrisch quantitativ messbare Größen sind.

Seitennummerierung

  • Previous Page
  • Seite 30
  • Seite 31
  • Aktuelle Seite 32
  • Seite 33
  • Seite 34
  • Seite 35
  • Next Page

884 Suchergebnisse

Fächer
  • Mathematik (884)
Klassen
  • 5. Klasse (455)
  • 6. Klasse (455)
  • 7. Klasse (455)
  • 8. Klasse (455)
  • 9. Klasse (455)
  • 10. Klasse (455)
  • Oberstufe/Abitur (429)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025