Direkt zum Inhalt

1167 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Qualitative anorganischee Analyse

Die analytische Chemie befasst sich mit der Identifizierung der Bestandteile und der Ermittlung der Zusammensetzung von Stoffen oder Stoffgemischen. Durch die Anwendung geeigneter Analysenmethoden sind folgende grundsätzliche Fragestellungen zu beantworten:

  1. Welcher Stoff liegt vor?
  2. Welche Zusammensetzung hat der Stoff oder das Gemisch?
  3. Wie ist die Substanz aufgebaut?

Das Ziel der anorganischen qualitativen Analyse besteht in der Identifizierung anorganischer Substanzen, d. h. Elementen, Ionenverbindungen oder Molekülverbindungen.

Artikel lesen

Adolf von Baeyer

* 31.10.1835 in Berlin
† 20.08.1917 in Starnberg

ADOLF VON BAEYER war ein deutscher Chemiker. Nach seinem Militärdienst widmete er sich der Chemie. Er erforschte u. a. Konstitution und Synthese von Indigo, einem blauen Farbstoff. Heute noch ist sein BAEYERS-Reagenz bekannt, mit dem man einen Hinweis auf Mehrfachbindungen in unbekannten organischen Verbindungen erhält.

Artikel lesen

Grundprinzip der Chromatografie

Bei der Chromatografie handelt es sich um ein physikalisches Trennverfahren, bei denen die Stofftrennung auf der unterschiedlichen Verteilung zwischen einer stationären und einer mobilen Phase, die nicht miteinander mischbar sind, beruht. Chromatografische Analyseverfahren dienen zur qualitativen und quantitativen Analyse.

Artikel lesen

Dünnschichtchromatografie

Die Chromatografie bezeichnet physikalische Trennverfahren, bei denen die Stofftrennung auf der unterschiedlichen Verteilung zwischen einer stationären und einer mobilen Phase, die nicht miteinander mischbar sind, beruht. Bei der Dünnschichtchromatografie erfolgt die Trennung durch mehrstufige Verteilungsprozesse zwischen einer festen stationären Phase und einer mobilen flüssigen Phase hauptsächlich aufgrund von Adsorptions-Desorptions-Wechselwirkungen. Sie findet hauptsächlich zur qualitativen Analyse oder zur Vortrennung von Stoffgemischen Anwendung.

Artikel lesen

Elementaranalyse

Anorganische Stoffe bestehen aus Atomen oder Ionen, die durch verschiedene Methoden nachgewiesen werden können. Dabei unterscheidet man die qualitative Elementaranalyse, bei der zunächst die Art der Bestandteile eines Stoffs ermittelt wird, und die quantitative Elementaranalyse. Bei letzterer bestimmt man die mengenmäßige Zusammensetzung eines reinen Stoffs (Summenformel) oder eines Stoffgemisches.

Artikel lesen

Organische Elementaranalyse

Die Identifizierung organischer Verbindungen mit einfachen Nachweisreaktionen ist nicht besonders eindeutig , da man oft nur Hinweise auf die Stoffklasse erhält. Deshalb bestimmt man in der Organik die Zusammensetzung der Substanzen quantitativ. Dies ist wesentlich einfacher als in der Anorganik, da die meisten organischen Moleküle aus den Elementen Kohlenstoff, Wasserstoff, Sauerstoff und Stickstoff bestehen. Nur wenige Moleküle enthalten noch weitere Heteroatome wie Halogenatome (F, Cl, Br, I) oder Schwefel und werden noch weiteren Untersuchungen unterzogen.
Bei der Elementaranalyse oder CHN-Analyse werden die Gewichtsprozente der chemischen Elemente in organischen Verbindungen bestimmt und daraus die Verhältnisformel berechnet.

Artikel lesen

Organische qualitative Elementaranalyse

Es gibt zwar viel mehr mehr organische Verbindungen als anorganische, doch erstere setzen sich nur aus wenigen Elementen zusammen.
Diese Elemente können durch einfache chemische Experimente nachgewiesen werden. Dadurch erhält man erste Hinweise darauf, zu welcher Stoffklasse eine organische Verbindung gehört.

Artikel lesen

Flammenfärbung

Bei der qualitativen chemischen Analyse wird als Vorprobe die Flammenfärbung genutzt. Durch ein Spektroskop betrachtet, werden diskrete, charakteristische Linien sichtbar, die sowohl eine qualitative als auch eine quantitative Charakterisierung ermöglichen

Artikel lesen

Flüssigkeitschromatografie

Die Chromatografie bezeichnet physikalische Trennverfahren, bei denen die Stofftrennung auf der unterschiedlichen Verteilung zwischen einer stationären und einer mobilen Phase, die nicht miteinander mischbar sind, beruht. In der Säulenchromatografie ist die feste stationäre Phase in einem langen, meist senkrecht stehenden Rohr als Säule angeordnet. Das zu trennende Gemisch wird oben auf die Säule gegeben und fließt mit der flüssigen mobilen Phase infolge der Schwerkraft oder angetrieben durch eine Pumpe durch die Säule.
Je nach Säulendurchmesser, Teilchengröße der stationären Phase und Arbeitsdruck unterscheidet man zwischen der klassischen Säulenchromatografie und der modernen Hochleistungsflüssigkeitschromatografie.

Artikel lesen

Fotografie

Grundlage der Fotografie sind die lichtempfindlichen Eigenschaften der Silberhalogenide. Gelangt Licht an eine solche Verbindung, kommt es zu einer fotochemischen Reaktion in deren Verlauf Silberkeime entstehen.Nach der Belichtung muss das Foto entwickelt und fixiert werden.

Artikel lesen

Gaschromatografie

Die Chromatografie bezeichnet physikalische Trennverfahren, bei denen die Stofftrennung auf der unterschiedlichen Verteilung zwischen einer stationären und einer mobilen Phase, die nicht miteinander mischbar sind, beruht.
Die Gaschromatografie ist ein Trennverfahren für Stoffgemische, die gasförmig sind oder sich unzersetzt in die mobile Gasphase überführen lassen. Die Siedepunkte der zu analysierenden Stoffe sollten zwischen 40 und 300 °C liegen. Als stationäre Phase dient ein Feststoff oder eine flüssige Phase.

Artikel lesen

Chemische Analytik in der Kriminalistik

In der Kriminalistik hinterlassen die Täter fast immer Spuren, die jedoch oft nur mit speziellen physikalische und chemische Analysemethoden sichtbar gemacht und ausgewertet werden können.
Dabei reicht die Palette von einfachen chemischen Reaktionen zum Nachweis von Giften über die Sichtbarmachung von Fingerabdrücken bis hin zu komplizierten physikalischen und biochemischen Methoden.
Insbesondere die Analyse des Erbguts, der sogenannte genetische Fingerabdruck erlaubt die eindeutige Überführung von Straftätern aller Coleur. Aber auch Dopingsünder im Sport, verantwortungslose Väter und Umweltsünder können mithilfe unterschiedlicher Analysenmethoden, z. B. chromatografischer oder elektrophoretischer Verfahren, identifiziert werden.

Artikel lesen

Nachweis von Ammonium-Ionen

Ammoniak ist an seinem typischen, stechenden Geruch zu erkennen. Außerdem reagieren Ammoniak und Wasser in einer Protolysereaktion zu Ammonium-Ionen und negativ geladenen Hydroxid-Ionen.
Letztere färben Universalindikatoren blau, die Färbung gilt als indirekter Nachweis für Ammoniak und Ammonium-Ionen.

Artikel lesen

Nachweis von Carbonat-Ionen

Carbonat-Ionen werden durch eine Fällungsreaktion nachgewiesen.
Dabei wird die Eigenschaft der Carbonat-Ionen genutzt, dass sie bei Zugabe von Säuren in Kohlenstoffdioxid und Wasser zerfallen. Das gebildete Kohlenstoffdioxid reagiert mit Calciumhydroxid- oder Bariumhydroxidlösung zu schwer löslichem Calcium- oder Bariumcarbonat.

Artikel lesen

Nachweis von Nitrat-Ionen

Nitrat-Ionen können durch verschiedene chemische Reaktionen mit entsprechenden Teststreifen nachgewiesen werden. Außerdem nutzt man zum Nitrat-Nachweis die „Ringprobe“, eine charakteristische Farbreaktion mit Eisen(II)-sulfatlösung und konzentrierter Schwefelsäure.

Artikel lesen

Naturstoffe, Nachweis

Die Nachweisreaktionen der Kohlenhydrate, Fette und Eiweiße sind mehr oder weniger spezifische Nachweisreaktionen der Stoffklassen. Anders als bei anorganischen Fällungs- oder Farbreaktionen sind die Reaktionsgleichungen oft sehr kompliziert und daher nur schwer darzustellen.
Die Vielfalt der makromolekularen Naturstoffe ist viel zu groß, als das man für jeden einzelnen Stoff einen spezifischen Nachweis entwickeln könnte. Deshalb nutzt man zur eindeutigen Identifizierung der Einzelstoffe heutzutage moderne instrumentelle Methoden wie die Röntgenstrukturanalyse oder elektrophoretische Verfahren. Stehen diese nicht zur Verfügung, muss man physikalische Eigenschaften wie Schmelzpunkte oder optische Drehwerte für eine eindeutige Identifizierung heranziehen.

Artikel lesen

Ozonloch

Ozon ist eine dreiatomige Modifikation des Sauerstoffs und chemisch viel reaktiver als der viel häufiger vorkommende Disauerstoff. Ozon besitzt einen charakteristischen Geruch, den man z. B. gut in Copyshops wahrnehmen kann.
Es entsteht z. B. in der oberen Atmosphäre unter Einwirkung von UV-Strahlung aus Sauerstoffmolekülen und bildet die schützende Ozonschicht der Erde. Diese ist für uns wichtig, weil sie biologisch schädliche UV-Strahlung von der Erdoberfläche fernhält.

Durch verschiedene Spurengase in der Atmosphäre wird Ozon teilweise abgebaut, sodass in den letzten 30 Jahren die Ozonkonzentration um ca. 10% gesunken ist. Über den Polkappen der Erde wird seit 1985 zu bestimmten Jahreszeiten eine regional begrenzte, viel stärkere Abnahme des Ozongehalts - das sogenannte Ozonloch - registriert.

Artikel lesen

PET

Polyethylenterephthalat (PET) ist einer der wichtigsten Polyester und gehört zur Gruppe der Polykondensate. Seine große Bedeutung kommt daher, dass er ein vielseitiger Werkstoff mit breitem Einsatzgebiet ist. So wird er als Textilfaser genutzt, und außerdem werden zunehmend Getränkeflaschen aus PET hergestellt. Die Umkehrung der Synthese ermöglicht ein vollständiges Recycling des Werkstoffes, sodass er ökologisch betrachtet anderen Kunststoffen vorzuziehen ist.

Artikel lesen

Trennungsgänge

Ein Trennungsgang wird durchgeführt, wenn man ermitteln möchte, welche Bestandteile ein Stoffgemisch enthält, oder wenn man mit möglichst reinen Stoffen arbeiten will.

Der Trennungsgang ist Teil einer chemischen Analyse und erleichtert den Nachweis einzelner Stoffe.

Artikel lesen

Wissenstest, Identifizierung

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Chemie - Identifizierung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Iatrochemie

Mit Beginn der Neuzeit gewann die Suche nach der Universalmedizin wieder zunehmend an Bedeutung. Der Arzt PARACELSUS wurde der Begründer der Iatrochemie (griech. iatros = Arzt), indem er neue chemische Verbindungen zur Behandlung von Krankheiten einsetzte und die Elementelehre erweiterte.

Durch die Verbreitung der Papierherstellung und des Buchdrucks wurden die naturwissenschaftlichen Erkenntnisse von vielen Gelehrten zugänglich und trotz der Geißel der Inquisition weiterentwickelt. In Europa erfolgte im 17. Jahrhundert die Bildung von Akademien, die anders als die eher geisteswissenschaftlich ausgerichteten Universitäten der naturwissenschaftlichen Forschung dienten. Als Begründer der Chemie als empirischer Wissenschaft gilt der Engländer ROBERT BOYLE, der die Notwendigkeit der experimentellen Methode in der wissenschaftlichen Untersuchung – ganz im Sinne des Physikers GALILEI – betonte. BOYLE definierte den Begriff Element neu und begründete die klassische chemische Analyse. Er legte mit seinen Arbeiten die Grundlagen für die rasante Entwicklung der Chemie im darauffolgenden 18. Jahrhundert.

Artikel lesen

Internationales Einheitensystem (SI)

Im Internationalen Einheitensystem (SI) sind Basiseinheiten für sieben physikalische Größen festgelegt. Die meisten anderen Einheiten lassen sich aus diesen sieben Einheiten ableiten. Die Festlegungen über Einheiten sind international vereinbart und werden von der Generalkonferenz für Maß und Gewicht (CGPM) getroffen. Als verbindliche Basiseinheiten wurden auf der 11. Generalkonferenz für Maß und Gewicht im Jahre 1960 folgende sieben Einheiten festgelegt:

  • das Meter (1 m) als die Einheit der Länge bzw. des Weges,
  • das Kilogramm (1 kg) als Einheit der Masse,
  • die Sekunde (1 s) als Einheit für die Zeit,
  • das Ampere (1 A) als Einheit für die Stromstärke,
  • das Kelvin (1 K) als Einheit für die Temperatur,
  • das Mol (1 mol) als Einheit für die Stoffmenge,
  • die Candela (1 cd) als Einheit für die Lichtstärke
Artikel lesen

Interpretieren, Reaktionsgleichungen

Interpretieren ist eine Tätigkeit, eine verbale Aussage, die eng mit dem Experimentieren sowie mit Gleichungen und Diagrammen verbunden ist.

Beim Interpretieren von Reaktionsgleichungen wird den Zeichen und Symbolen sowie den dargestellten Sachverhalten eine inhaltliche Bedeutung zugeordnet.

Artikel lesen

Klassifizieren

Klassifizieren ist eine Erkenntnistätigkeit. Beim Klassifizieren werden verschiedene Objekte aufgrund gemeinsamer und unterscheidender Merkmale in Klassen eingeteilt. Alle Objekte, die gemeinsame Merkmale besitzen, werden zu einer Klasse zusammengefasst. Stoffe kann man z. B bezüglich ihrer Härte, ihrer Dichte, ihrer Wärmeleitfähigkeit oder ihrer elektrischen Leitfähigkeit klassifizieren.

Artikel lesen

Masse von Körpern

Die Masse gibt an, wie leicht oder schwer und wie träge eine Stoffprobe oder Stoffportion ist.

  • Formelzeichen: m
  • Einheit: ein Kilogramm (1 kg); ein Gramm (1g)

Die Masse einer Stoffprobe ist im Unterschied zur Gewichtskraft an jedem beliebigen Ort gleich groß. Die Einheit der Masse ist eine Basiseinheit des Internationalen Einheitensystems (SI).

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Seite 5
  • Seite 6
  • Next Page

1167 Suchergebnisse

Fächer
  • Chemie (1167)
Klassen
  • 5. Klasse (568)
  • 6. Klasse (568)
  • 7. Klasse (568)
  • 8. Klasse (568)
  • 9. Klasse (568)
  • 10. Klasse (568)
  • Oberstufe/Abitur (599)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025