Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Dreiecksverteilung (simpsonsche Verteilung)

Die Dreiecksverteilung wird in den meisten Lehrbüchern zur Stochastik kaum erwähnt bzw. nur am Rande behandelt. Das mag seinen Grund darin haben, dass diese Verteilung kein eigenständiges, aus der Praxis stammendes Anwendungsgebiet besitzt.
Die erste Abhandlung über diese Form der Verteilung von Zufallsgrößen in der Geschichte der Wahrscheinlichkeitstheorie stammt vom englischen Mathematiker THOMAS SIMPSON (1710 bis 1761), deshalb spricht man mitunter auch von der simpsonschen Verteilung.

Artikel lesen

Drei-Sigma-Regel

Wählt man in der tschebyschewschen Ungleichung P ( |   X − E X   | ≥ α ) ≤ 1 α 2 ⋅ D 2 X für den Parameter α Vielfache der Standardabweichung σ = D X = E ( X − E X ) 2 , setzt man also α = n ⋅ σ , so erhält man:
  P ( |   X − E X   | ≥ n ⋅ σ ) ≤ 1 ( n ⋅ σ ) 2 ⋅ σ 2 = 1 n 2

Die Wahrscheinlichkeit, dass X einen Wert annimmt, der von EX um mindestens das n-fache der Standardabweichung σ abweicht, ist folglich höchstens 1 n 2 .
Für die Spezialfälle n = 1 ;       2 ;       3 ergibt sich dann Folgendes:
  P ( |   X − E X   | ≥ σ ) ≤ 1   P ( |   X − E X   | ≥ 2 σ ) ≤ 0,25   P ( |   X − E X   | ≥ 3 σ ) ≤ 0, 1 ¯

Diese aus der tschebyschewschen Ungleichung gewonnenen Aussagen werden als σ - Re g e l oder 3 σ - Re g e l bezeichnet.

Artikel lesen

Ereignisalgebra

In der Praxis hat es sich als günstig und richtig erwiesen von einer derartigen Menge von Ereignissen eines zufälligen Vorgangs, denen man eine Wahrscheinlichkeit zuordnen möchte, zu fordern, dass sie die im folgenden gezeigten Bedingungen einer Ereignisalgebra E erfüllt.

Artikel lesen

Zufällige Ereignisse

Der mathematische Begriff des (zufälligen) Ereignisses ist für die Wahrscheinlichkeitstheorie von grundlegender Bedeutung.
Ausgehend von der Erfahrung, dass beim Ablauf zufälliger Vorgänge deren Ergebnis im Rahmen verschiedener Möglichkeiten ungewiss ist, ordnet man in der Wahrscheinlichkeitstheorie jedem Zufallsexperiment eine Ergebnismenge Ω zu.

  • Jede Teilmenge A der Ergebnismenge Ω eines Zufallsexperiments heißt (zufälliges) Ereignis A.

Spezielle Ereignisse sind das unmögliche und das sichere Ereignis, atomare Ereignisse, Gegenereignisse, unvereinbare sowie unabhängige Ereignisse.

Artikel lesen

Unabhängigkeit von (mehr als zwei) Ereignissen

Zwei Ereignisse A und B mit positiver Wahrscheinlichkeit sind genau dann voneinander stochastisch unabhängig, wenn gilt:
  P ( A ∩ B ) = P ( A ) ⋅ P ( B )
Man kann diesen Ansatz auf endlich oder abzählbar viele Ereignisse ausdehnen, wobei der Einfachheit halber vorausgesetzt wird, dass alle betrachteten Ereignisse eine positive Wahrscheinlichkeit besitzen. Dabei ist aber Vorsicht geboten. Es ist zum Beispiel möglich, dass die Ereignisse A 1 ,       A 2 ,       ...,       A n paarweise voneinander unabhängig sind (d.h., je zwei der Ereignisse sind voneinander unabhängig), die Ereignisse A 1 ,       A 2 ,       ...,       A n in ihrer Gesamtheit sind dies aber nicht.

Artikel lesen

Unabhängigkeit von zwei Ereignissen

Im Folgenden soll der Begriff der (stochastischen) Unabhängigkeit von zwei Ereignissen A und B  mit positiven Wahrscheinlichkeiten betrachtet werden.
Die Unabhängigkeit von Ereignissen darf nicht mit der Unvereinbarkeit von Ereignissen verwechselt werden.

Artikel lesen

Erwartungswert von Zufallsgrößen

Da Zufallsgrößen oftmals sehr komplizierte mathematische Gebilde sind, sucht man nach zahlenmäßigen Kenngrößen, die über die Zufallsgröße Wesentliches aussagen und zugleich aus Beobachtungsdaten zumindest näherungsweise einfach zu bestimmen sind.
Eine derartige Kenngröße ist der Erwartungswert.

  • Es sei X eine endliche Zufallsgröße, die genau die Werte x i       ( m i t       i ∈ { 1 ;   2 ;   ... ;   n } ) annehmen kann, und zwar jeweils mit der Wahrscheinlichkeit P ( X = x i ) . Dann nennt man die folgende Kenngröße den Erwartungswert der Zufallsgröße X:
    E X = x 1 ⋅ P ( X = x 1 ) + x 2 ⋅ P ( X = x 2 ) + ... + x n ⋅ P ( X = x n )

Anmerkung: Für EX schreibt man auch E ( X ) ,       μ ( X ) ,       μ X       o d e r       μ .

Artikel lesen

Scharlach

Scharlach ist eine Infektionskrankheit. Hierbei wirken Bakterien aus der Gruppe der Streptokokken, die neben Scharlach noch für viele andere Erkrankungen zuständig sind, wie z. B. Mandel- und Halsentzündungen. Die Übertragung erfolgt meist durch Tröpfcheninfektion (Niesen, Husten u. ä.). Die Inkubationszeit beträgt bei Scharlach ungefähr 2 – 4 Tage. Die Infektiösität der erkrankten Person endet 24 Stunden nach der Antibiotikatherapie. Die Erkrankung beginnt plötzlich mit folgenden Symptomen: starke Halsschmerzen, Husten, Erbrechen, hohem Fieber, Herzrasen, Kopf- und Bauchschmerzen. Die ersten drei Tage ist die Zunge belegt, dann sieht sie himbeerfarbig aus. Meist am 2. Tag kommt es zu einem Ausschlag, der in den Leisten beginnt und sich dann über den gesamten Körper ausbreitet. Mund und Kinn werden vom Ausschlag ausgespart. Die vom Ausschlag betroffenen Hautareale fühlen sich an wie Sandpapier. Behandelt wird Scharlach mit Antibiotika (Penicillin).

Artikel lesen

Rechenregeln für Erwartungswerte

Für die Erwartungswerte von Zufallsgrößen gelten eine Reihe wichtiger und nützlicher Rechneregeln. Der Einfachheit halber sollen hier nur endliche Zufallsgrößen betrachtet werden.
Erwartungswerte können nach diesen Sätzen, nach Definitionen bzw. durch Simulationen bestimmt werden.

Artikel lesen

Galton-Brett

Ein GALTON-Brett dient zum Veranschaulichen von Binomialverteilungen. Es ist nach dem englischen Naturforscher Sir FRANCIS GALTON (1822 bis 1911) benannt.

Artikel lesen

Sir Francis Galton

* 16. Februar 1822 Birmingham
† 17. Januar 1911 Haslemere

GALTON war besonders als Anthropologe tätig, er gilt u.a. als Begründer der Daktyloskopie. Zudem konstruierte er die nach ihm benannte GALTON-Pfeife für Töne im oberen Frequenzbereich bzw. im Bereich des Ultraschalls.
Mit seinem Namen verbunden ist das sogenannte GALTON-Brett, das zur Demonstration der Binomialverteilung verwendet wird.

Artikel lesen

Carl Friedrich Gauß

* 30. April 1777 Braunschweig
† 23. Februar 1855 Göttingen

Der oft als „Princeps mathematicorum“ (Fürst der Mathematik) bezeichnete CARL FRIEDRICH GAUSS erzielte bahnbrechende Leistungen in Mathematik, Physik, Astronomie und Geodäsie.
Auf mathematischem Gebiet beschäftigte er sich vor allem mit Probemen der Zahlentheorie und Algebra sowie mit Fragen der numerischen Mathematik. Durch neue Berechnungsmethoden schuf er die Grundlagen für eine exakte Bestimmung der Planetenbahnen.
Gemeinsam mit dem Physiker WILHELM WEBER trug GAUSS wesentlich zur Erforschung des Erdmagnetismus und zur Aufstellung eines absoluten Maßsystems bei. Weitere erwähnenswerte Leistungen sind die Bestimmung der Lage der Magnetpole der Erde sowie die Entwicklung des elektromagnetischen Telegrafen.

Artikel lesen

Das Geburtstagsproblem

Sarah ist stolz darauf, dass sie am gleichen Tag wie ihr Lieblingsonkel Lutz Geburtstag hat. Das ist für sie Ausdruck einer besonderen Fügung des Schicksals. Etwas enttäuscht ist sie allerdings, als ihr Onkel meint, es sei nicht so außergewöhnlich, dass von den insgesamt 32 lebenden Mitgliedern ihrer Familie zwei am gleichen Tag Geburtstag haben.

Um die Aussage des Onkels zu überprüfen, muss man sich etwas näher mit dem sogenannten Geburtstagsproblem beschäftigen, das auf den österreichischen Mathematiker RICHARD VON MISES (1883 bis 1953) zurückgeht.

Artikel lesen

Empirisches Gesetz der großen Zahlen

Das empirisches Gesetz der großen Zahlen, welches JAKOB BERNOULLI (1655 bis 1705) als „theorema aureum“ (goldenen Satz) bezeichnet hat, lautet folgendermaßen:

  • Ist A ein Ereignis eines Zufallsexperiments, so stabilisieren sich bei einer hinreichend großen Anzahl n von Durchführungen dieses Experiments die relativen Häufigkeiten h n ( A ) .
Artikel lesen

Gleichverteilungen

Der französische Mathematiker PIERRE SIMON DE LAPLACE (1749 bis 1827) untersuchte als einer der Ersten intensiv Zufallsexperimente, bei denen sinnvollerweise angenommen werden kann, dass jedes seiner Ergebnisse mit der gleichen Wahrscheinlichkeit eintritt.

Artikel lesen

Die gaußsche Glockenkurve

Der Graph der Dichtefunktion der Standardnormalverteilung trägt (vorwiegend im deutschsprachigen Raum) auch die Bezeichnung gaußsche Glockenkurve.
Die Normalverteilung selbst wurde allerdings nicht von CARL FRIEDRICH GAUSS (1777 bis 1855) entdeckt. Dessen Verdienst um die Wahrscheinlichkeitsrechnung liegt auf einer anderen Ebene. Durch seine Arbeiten zur sogenannten Fehlerrechnung hat er der Entwicklung der Stochastik wichtige Impulse gegeben.

Artikel lesen

Der Grenzwertsatz von Moivre-Laplace

Grenzwertsätze gehören zu den wichtigsten Aussagen der Stochastik. Der französische Mathematiker PIERRE SIMON DE LAPLACE (1749 bis 1827) nannte sie eine der interessantesten und heikelsten Teile der Analysis des Zufalls.

Wie es schon sein Name zum Ausdruck bringt, kommt dabei dem Zentralen Grenzwertsatz, der eine theoretische Erklärung für das Auftreten der Normalverteilung liefert, eine besondere Stellung zu. Die älteste Fassung des Zentralen Grenzwertsatzes in der Geschichte der Wahrscheinlichkeitstheorie ist der Grenzwertsatz von MOIVRE-LAPLACE, der die Approximation der Binomialverteilung durch die Normalverteilung beschreibt.

Praktisch wird dieser Satz vor allem zum näherungsweisen Berechnen von Binomialwahrscheinlichkeiten benutzt.

Artikel lesen

Der Zentrale Grenzwertsatz

Ausgehend von der Erfahrung, dass viele Alltagsphänomene, die sich aus unabhängig voneinander wirkenden kleinen Komponenten zusammensetzen, annähernd normalverteilt sind, richtete sich das Augenmerk mehrerer Mathematikergenerationen vor allem auf die Frage, welche Bedingungen man dafür zu fordern hat.

Artikel lesen

Schlagbaummechanismus

Blüten spielen eine wichtige Rolle bei der Fortpflanzung von Pflanzen. Aus der Samenanlage im Fruchtblatt entwickelt sich der Samen. Aus dem Samen kann später eine neue Pflanze entstehen.
Die Fruchtblätter sind die weiblichen, die Staubblätter die männlichen Blütenteile. Häufig sind die Fruchtblätter zu einem Stempel verwachsen, der aus Narbe, Griffel und Fruchtknoten besteht. Der Fruchtknoten enthält eine oder mehrere Samenanlagen. In der Samenanlage befindet sich die Eizelle. An dem langen Staubfaden des Staubblatts ist ein Staubbeutel. In ihm entsteht der Blütenstaub (Pollen). Im Blütenstaub entwickeln sich Samenzellen.
Bevor sich Samen und Früchte bilden können, müssen die weiblichen Blütenteile bestäubt werden. Als Bestäubung bezeichnet man den Vorgang, bei dem der Blütenstaub von den Staubblättern auf die Narbe eines Fruchtblatts übertragen wird. Dabei unterscheidet man Insekten- und Windbestäubung.
Einige Pflanzen, z. B. der Wiesen-Salbei, haben einen besonderen Mechanismus entwickelt, um an den Blütenstaub zu kommen, der an den Insektenkörpern haftet, den sogenannten Schlagbaummechanismus.

Artikel lesen

Histogramme

Zum grafischen Veranschaulichen der Häufigkeits- und der Wahrscheinlichkeitsverteilungen von endlichen Zufallsgrößen X mit
  X ≙ ( x 1 x 2 ... x n P ( X = x 1 ) P ( X = x 2 ) ... P ( X = x n ) )
werden ihre relativen Häufigkeiten der Klassen bzw. ihre Einzelwahrscheinlichkeiten häufig als Stäbe oder als Säulen (Rechtecke) dargestellt, die senkrecht auf der Abszissenachse stehen.
Ist bei einem derartigen aufrechten Säulendiagramm jeweils der Flächeninhalt des über der Klasse K i bzw. über x i errichteten Rechtecks gleich der relativen Häufigkeit h n ( K i ) bzw. der Einzelwahrscheinlichkeit P ( X = x i ) so nennt man es Histogramm.

Artikel lesen

Andrej Nikolajewitsch Kolmogorow

* 25. April 1903 Tambow (Russland)
† 20. Oktober 1987 Moskau

ANDREJ NIKOLAJEWITSCH KOLMOGOROW zählt zu den bedeutendsten Mathematikern des 20. Jahrhunderts. Er ist ein Vertreter jener sowjetischen Mathematik, die sich zwischen den beiden Weltkriegen als zweites mathematisches Zentrum neben den USA herausbildete und die eng an die hervorragenden Traditionen russischer Mathematiker anknüpfte.
Er leistete fundamentale Beiträge auf nahezu allen Teilgebieten der Mathematik.
Besonders intensiv arbeitete KOLMOGOROW auf dem Gebiet der Wahrscheinlichkeitsrechnung und der mathematischen Statistik, speziell die axiomatische Grundlegung des Wahrscheinlichkeitsbegriffs geht auf ihn zurück.

Artikel lesen

Laplace-Experimente

Ein Zufallsexperiment (Zufallsversuch) mit einer endlichen Ergebnismenge Ω = { e 1 ;   e 2 ;   ... ;   e n } heißt LAPLACE-Experiment, wenn es der LAPLACE-Annahme genügt, d.h. wenn alle seine atomaren Ereignisse gleichwahrscheinlich sind, d.h. wenn diese jeweils mit derselben Wahrscheinlichkeit P ( { e 1 } ) = P ( { e 2 } ) = ... = P ( { e n } ) eintreten.

Artikel lesen

Pierre Simon de Laplace

* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der Wahrscheinlichkeitsrechnung, der höheren Analysis sowie der Himmelsmechanik.
So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Artikel lesen

Die Laplace-Regel

Schon lange vor der axiomatischen Begründung der Stochastik rechnete man mit Wahrscheinlichkeiten. Besonders zu den Zeiten, da die Mathematik hof- und gesellschaftsfähig war, wurden deren professionellen Vertretern immer wieder Fragen zu Glücks- und Kartenspielen gestellt. Dabei erwartete man nicht selten Aussagen über sogenannte zusammengesetzte Ereignisse, wie dies zum Beispiel der am Hof LUDWIG XIV. lebende Literat und Philosoph ANTOINE GOMBAUD CHEVALIER DE MÉRÉ (1610 bis 1685) gegenüber dem Mathematiker BLAISE PASCAL (1623 bis 1662) tat.

Dieser Fragestellung liegt ein sogenanntes LAPLACE-Experiment, ein Zufallsexperiment mit endlich vielen Ergebnissen (Ausfällen), von denen jedes mit der gleichen Wahrscheinlichkeit eintritt, zugrunde. Sie kann mithilfe der LAPLACE-Regel gelöst werden.

Artikel lesen

Mehrfeldertafeln

Interessieren bei der n-maligen Durchführung eines Zufallsexperiments nicht nur zwei Ereignisse und ihre jeweiligen Gegenereignisse, sondern mehrere, so versucht man, die registrierten absoluten und relativen Häufigkeiten bzw. die Wahrscheinlichkeiten der dann möglichen Ereignisse (in Verallgemeinerung der Vierfeldertafel) in Form einer Mehrfeldertafel zu protokollieren.
Als Beispiele werden Achtfeldertafeln mit zwei und drei Zerlegungen betrachtet.

Seitennummerierung

  • Previous Page
  • Seite 176
  • Seite 177
  • Aktuelle Seite 178
  • Seite 179
  • Seite 180
  • Seite 181
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025