Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Eigenschaften mechanischer Wellen im Überblick

Mechanische Wellen, z. B. Wasserwellen oder Schallwellen, haben eine Reihe von charakteristischen Eigenschaften. Sie breiten sich von einem Erreger (Quelle) aus mit einer bestimmten Geschwindigkeit fort. Mit Wellen wird Energie, aber kein Stoff transportiert. Wellen können reflektiert und gebrochen werden. Es können auch Beugung und Interferenz (Überlagerung) auftreten. Darüber hinaus können mechanische Wellen absorbiert, gestreut oder polarisiert werden. Ebenfalls zu beobachten ist bei mechanischen Wellen Dispersion.

Artikel lesen

Einteilung von Stößen

Stöße treten in Natur, Technik und Alltag in vielfältiger Art auf. Nach der Energiebilanz unterscheidet man zwischen unelastischen und elastischen Stößen. Nach der Lage der Körper, die sie beim Stoß zueinander haben, differenziert man zwischen geraden und schiefen Stößen. Darüber hinaus kann ein Stoß zentral oder nicht zentral sein. Alle genannten Arten von Stößen sind Idealisierungen, die in der Praxis nur näherungsweise auftreten.

Artikel lesen

Energiearten: Primärenergie, Sekundäreneergie, Nutzenergie

Energieträger, die in der Natur vorhanden sind, nennt man Primärenergieträger, die in ihnen gespeicherte Energie ist die Primärenergie. Primärenergie wird häufig vor der Nutzung durch den Menschen in andere Formen umgewandelt, die sich besser transportieren, verteilen, lagern und umwandeln lassen. Diese Zwischenstufe nennt man Sekundärenergie, die betreffenden Energieträger Sekundärenergieträger. Unter Nutzenergie versteht man die Energie, die vom Menschen unmittelbar genutzt wird.

Artikel lesen

Energieformen und Energieträger

Energie kann in unterschiedlichen Formen existieren. Wichtige Energieformen sind die chemische Energie, die innere Energie, die Kernenergie, die potenzielle und die kinetische Energie sowie die Energie, die in elektrischen und magnetischen Feldern gespeichert ist (Lichtenergie, elektrische Energie, magnetische Energie), und diejenige, die in Gravitationsfeldern gespeichert ist (Feldenergie).
Objekte, die Energie besitzen, nennt man Energieträger oder Energiequellen. Zu solchen Energieträgern oder Energiequellen gehören Kraftstoffe und Heizstoffe ebenso wie die Nahrung, fließendes und angestautes Wasser, Batterien oder aufgeladene Kondensatoren. Als Energiequellen betrachtet man auch Solarzellen und Sonnenkollektoren, die Sonne und andere Sterne oder spaltbare Stoffe wie Uran oder Plutonium.

Artikel lesen

Mechanische Energie und ihre Erhaltung

Mechanische Energie ist die Fähigkeit eines Körpers, aufgrund seiner Lage oder seiner Bewegung mechanische Arbeit zu verrichten, Wärme abzugeben oder Strahlung auszusenden.

Formelzeichen: E mech
Einheiten:ein Joule (1 J)
ein Newtonmeter (1 Nm)


Spezielle Formen mechanischer Energie sind die potenzielle Energie und die kinetische Energie.
Für ein abgeschlossenes mechanisches System gilt der Energieerhaltungssatz der Mechanik.

Artikel lesen

Energie und Arbeit im Gravitationsfeld

Um eine Weltraumstation oder einen Satelliten in den Orbit zu bringen, ist eine bestimmte Arbeit im Gravitationsfeld der Erde erforderlich. Darüber hinaus muss der Station oder dem Satelliten eine bestimmte Geschwindigkeit verliehen werden, damit sie sich auf einer stabilen Bahn bewegen. Die Körper besitzen damit potenzielle und kinetische Energie. Arbeit und potenzielle Energie im Gravitationsfeld können mithilfe des Gravitationsgesetzes berechnet werden, die kinetische Energie ergibt sich aus der Masse und der Geschwindigkeit des Körpers.

Artikel lesen

Energie und Energieerhaltung

Energie ist die Fähigkeit, mechanische Arbeit zu verrichten, Wärme abzugeben oder Licht auszustrahlen.

Formelzeichen:
Einheit:
E
ein Joule (1 J)


Die Energie ist eine Zustandsgröße und in abgeschlossenen Systemen eine Erhaltungsgröße. Für sie gilt der Energieerhaltuntgssatz.

Artikel lesen

Standfestigkeit von Körpern

Gebäude, Türme, Krane oder Regale sollen standfest sein, also nicht umkippen. Entscheidend für die Standfestigkeit eines Körpers ist die Lage seines Schwerpunktes bezüglich seiner Auflagefläche. Ein Körper ist dann standfest, wenn die am Schwerpunkt angreifende Gewichtskraft durch die Auflagefläche verläuft. Der Körper befindet sich stets im stabilen Gleichgewicht.

Artikel lesen

Strömende Flüssigkeiten und Gase

Eine Strömung ist die gerichtete Bewegung eines Gases oder einer Flüssigkeit gegenüber einem Körper. Beispiele dafür sind strömendes Wasser in einem Fluss, strömendes Öl in einer Pipeline, strömendes Gas in einem Gasrohr oder die gegenüber einem Auto strömende Luft. Strömungen können mithilfe von Stromlinienbildern als Modell dargestellt werden. Unterschieden werden glatte (laminare) Strömungen und verwirbelte (turbulente) Strömungen.
Besteht zwischen einem Körper und einer strömenden Flüssigkeit bzw. einem strömenden Gas eine Relativbewegung, so tritt ein Strömungswiderstand auf. Handelt es sich bei dem Stoff um Luft, so spricht man vom Luftwiderstand und von der Luftwiderstandskraft.

Artikel lesen

Teilchenanzahl und Stoffmenge

Jeder Körper besteht aus einem oder mehreren Stoffen, jeder Stoff aus Teilchen. Das können Atome, Moleküle, Ionen, Elektronen oder andere Teilchen sein. Liegt eine bestimmte Stoffportion vor, so kann sie in zweierlei Weise charakterisiert werden:

  • Eine Stoffportion kann durch die Anzahl der Teilchen gekennzeichnet werden, aus denen sie besteht. Die betreffende physikalische Größe wird als Teilchenanzahl bezeichnet.
  • Eine Stoffportion kann durch die physikalische Größe Stoffmenge gekennzeichnet werden. Die in Mol gemessene Stoffmenge gibt an, das Wievielfache einer bestimmten Teilchenanzahl in einer Stoffportion verliegt.
Artikel lesen

Zufallsgrößen

Eine Zufallsgröße X ist dadurch charakterisiert, dass sie bei unter gleichen Bedingungen durchgeführten Versuchen verschiedene Werte annehmen kann. Man unterscheidet zwischen diskreten und stetigen (kontinuierlichen) Zufallsgrößen.
Während bei einer diskreten Zufallsgröße in einem Intervall nur endlich viele Werte x 1 ,   x 2   ...   x n möglich sind, kann eine stetige Zufallsgröße beliebig (unendlich) viele Werte annehmen.

Artikel lesen

Teilchenmodelle

Alle Stoffe sind aus sehr kleinen Teilchen, den Atomen und Molekülen, aufgebaut. Den Aufbau von Stoffen kann man mithilfe von Teilchenmodellen beschreiben bzw. veranschaulichen. Die Modelle ermöglichen es auch, eine Reihe von Erscheinungen zu deuten bzw. zu erklären.
Je nach ihrem Verwendungszweck gibt es sehr unterschiedliche Arten von Teilchenmodellen: Neben ideellen Modellen in Form eines Aussagensystems nutzt man auch verschiedene materielle (gegenständliche) Modellen, z.B. um die Struktur von Stoffen anschaulich zu machen.

Artikel lesen

Tonhöhe und Lautstärke

Wie wir Schall empfinden, hängt in starkem Maße von der Tonhöhe und der Lautstärke ab. Beides sind keine physikalischen, sondern physiologische Größen. Die Tonhöhe wird durch die Frequenz (Schnelligkeit der Druckschwankungen) bestimmt. Je größer die Frequenz der Schwingungen ist, desto höher ist der Ton. Die Lautstärke wird durch die Amplitude der Schwingungen (Größe der Druckschwankungen) bestimmt. Je größer die Amplitude der Schwingungen ist, desto lauter ist der Ton. Die Lautstärke wird in der Einheit Phon (phon) angegeben und kann mit Schallpegelmessern bestimmt werden.

Artikel lesen

Evangelista Torricelli

* 15.10.1608 Faenza
† 25.10.1647 Florenz

Er war ein italienischer Physiker und Mathematiker, der insbesondere durch seine Untersuchungen zum Luftdruck bekannt wurde. Eine Einheit des Luftdruckes, das Torr, wurde nach ihm benannt. In der Mathematik gehört er zu den Wegbereitern der Integralrechnung.

Artikel lesen

Das Trägheitsgesetz (1. newtonsches Gesetz)

Das von GALILEO GALILEI (1564-1642) gefundene Trägheitsgesetz lautet:
Ein Körper bleibt in Ruhe oder in gleichförmiger geradliniger Bewegung, solange die Summe der auf ihn wirkenden Kräfte null ist.
v → = konstant bei F → = ∑ i = 1 n F → i = 0
ISAAC NEWTON (1643-1727) formulierte dieses Gesetz in klarer Form in Rahmen seiner newtonschen Mechanik. Es wird deshalb auch als 1. newtonsches Gesetz bezeichnet.

Artikel lesen

Trägheitskräfte

Trägheitskräfte, auch Scheinkräfte genannt, treten in beschleunigten Bezugssystemen als real wirkende Kräfte auf. Sie wirken stets entgegen der Beschleunigung. Das gilt bei einer geradlinigen Bewegung ebenso wie bei einer Kreisbewegung. Dort werden sie als Zentrifugalkräfte bezeichnet.
Auch ein mit der Erdoberfläche verbundenes Bezugssystem ist aufgrund der Rotation der Erde um ihre Achse ein beschleunigtes Bezugssystem. Demzufolge wirkt auf jeden Körper, der sich auf der Erdoberfläche befindet, eine Trägheitskraft.
Eine weitere spezielle Trägheitskraft, die auf bewegte Körper auf der Erdoberfläche und damit auch auf fließendes Wasser oder bewegte Luftmassen wirkt, ist die CORIOLIS-Kraft.

Artikel lesen

Trägheitsmomente

Bei einer geradlinigen Bewegung hängt die Änderung des Bewegungszustandes eines Körpers von der wirkenden Kraft und von der Masse des Körpers ab. Die analogen Größen bei der Rotation sind des Drehmoment und das Trägheitsmoment.

Das Trägheitsmoment gibt an, wie träge ein drehbar gelagerter Körper gegenüber der Änderung seines Bewegungszustandes ist.
Formelzeichen: J
Einheit: ein Kilogramm mal Quadratmeter ( 1   kg ⋅ m 2 )

Allgemein gilt für das Trägheitsmoment: J = ∑ i = 1 n m i ⋅ r i 2 oder J = ∫ r 2   d m

Artikel lesen

Überlagerung gleichförmiger Bewegungen

Setzt sich die Bewegung eines Körpers aus zwei gleichförmigen Teilbewegungen zusammen, so spricht man von einer Überlagerung oder Superposition gleichförmiger Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende Bewegung (zusammengesetzte Bewegung). Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung gleichförmiger und gleichmäßig beschleunigter Bewegungen

Setzt sich die Bewegung eines Körpers aus einer gleichförmigen und einer gleichmäßig beschleunigten Bewegung zusammen, so spricht man von einer Überlagerung oder Superposition von Bewegungen. Die Teilbewegungen können die gleiche Richtung oder die entgegengesetzte Richtung haben oder einen beliebigen Winkel zueinander bilden.
Die beiden Teilbewegungen ergeben eine resultierende (zusammengesetzte) Bewegung. Für diese resultierende Bewegung können Wege und Geschwindigkeiten rechnerisch oder zeichnerisch ermittelt werden. Dabei ist der vektorielle Charakter von Weg und Geschwindigkeit zu beachten.

Artikel lesen

Überlagerung von Schwingungen

Schwingungen können sich wie andere Bewegungen überlagern. Das Ergebnis dieser Überlagerung hängt von den gegebenen Bedingungen ab.
Überlagern sich Schwingungen gleicher Schwingungsrichtung und gleicher Frequenz, so entstehen wieder harmonische Schwingungen, deren Amplitude von der Phasenlage der Einzelschwingungen abhängt. Bei geringem Unterschied der Frequenzen der Einzelschwingungen entsteht eine Schwebung.
Bei Einzelschwingungen deutlich unterschiedlicher Frequenz entsteht als Resultierende eine Schwingung, die nicht harmonisch ist.
Bei der Überlagerung von Schwingungen, deren Schwingungsrichtung senkrecht zueinander ist, bilden sich als resultierende Schwingungen Gebilde, die als LISSAJOUS-Figuren bezeichnet werden.

Artikel lesen

U-Boot

U-Boote oder Unterseeboote sind spezielle Schiffe, die für Fahrten unter Wasser gebaut sind. Aufgrund ihrer Konstruktion können sie im Wasser schwimmen, unter Wasser schweben, sinken oder steigen. Erreicht wird das durch spezielle Tauchzellen oder Tauchtanks, in denen sich als Ballast Wasser veränderlicher Menge befindet.

Artikel lesen

Ernst Abbe

* 23.01.1840 Eisenach
† 14.01.1905 Jena

ERNST ABBE war ein deutscher Physiker, Professor in Jena und Direktor der dortigen Sternwarte. Zusammen mit CARL ZEISS (1816-1888) begründete er die Theorie des Mikroskops und schuf weitere theoretische Grundlagen für optische Geräte. ABBE gilt als Begründer der wissenschaftlich-optischen Industrie.

Artikel lesen

Ultraschall und Infraschall

Der Mensch kann nicht allen Schall hören, der von schwingenden Körpern erzeugt wird. Wenn Schall hörbar sein soll, so muss die Lautstärke zwischen der Hörschwelle und der Schmerzschwelle liegen und die Frequenz zwischen
16 Hz und 20:000 Hz (20 kHz) betragen.
Schall mit einer Frequenz von über 20 kHz bezeichnet man als Ultraschall. Seine Frequenz kann bis zu 1 GHz, das sind eine Milliarde Hertz, betragen. Ultraschall wird in vielfältiger Weise in Technik und Medizin genutzt.
Schall mit Frequenzen von unter 16 Hz nennt man Infraschall. Er tritt u. a. im Zusammenhang mit Erdbeben auf.

Artikel lesen

Vakuum

Als Vakuum bezeichnet man einen gasgefüllten (luftgefüllten) Raum mit einem Druck unterhalb des normalen Luftdruckes von 1013,25 hPa. Je nach dem Druck wird dabei zwischen Grobvakuum, Feinvakuum, Hochvakuum und Ultrahochvakuum (Höchstvakuum) unterschieden. Erzeugen kann man ein Vakuum mithilfe von Vakuumpumpen.

Artikel lesen

Verbundene Gefäße

Verbundene Gefäße sind Anordnungen von Gefäßen, die aus mehreren Teilen bestehen, wobei diese Teile miteinander verbunden sind. Die Flüssigkeit steht in allen Teilen des Gefäßes gleich hoch.
Beispiele für verbundene Gefäße sind Kaffeekannen mit Tülle, Gießkannen, Füllstandsmesser an Behältern, ein Wasserturm mit dem damit verbundenen Leitungssystem, eine Schlauchwaage oder eine Schleuse.

Seitennummerierung

  • Previous Page
  • Seite 125
  • Seite 126
  • Aktuelle Seite 127
  • Seite 128
  • Seite 129
  • Seite 130
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026