Direkt zum Inhalt

7690 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Simulation

Als Simulation bezeichnet man die Nachbildung (das Nachahmen) eines Zufallsversuchs mithilfe eines geeigneten Zufallsgeräts. Als Zufallsgeräte werden Würfel oder Münzen verwendet, mitunter arbeitet man auch mit (in Tabellen zusammengestellten) Zufallszahlen (Zufallsziffern).

Artikel lesen

Standardnormalverteilung

Eine Normalverteilung N ( μ ;   σ 2 ) wird vollständig bestimmt durch ihren Erwartungswert μ und ihre Streuung σ 2 . Es liegt deshalb die Frage nahe, ob man eine beliebige Normalverteilung in eine spezielle Normalverteilung transformieren kann – und zwar in eine mit solchen Parametern, die den Termen ihrer Dichte- und Verteilungsfunktion eine möglichst einfache Gestalt geben. Für eine ( 0 ;   1 ) -normalverteilte Zufallsgröße wäre dies der Fall:
Für die Werte μ = 0       u n d       σ = 1 erhält man als Spezialfall die Standardnormalverteilung.

Artikel lesen

Die gaußsche Summenfunktion

Es sei X eine standardnormalverteilte Zufallsgröße mit der Dichtefunktion
  ϕ ( x ) :     x ↦ 1 2 π e −   1 2 x 2     ( x ∈ ℝ )
und der gaußschen Glockenkurve als Graph ihrer Dichtefunktion.

Die Verteilungsfunktion von X wird mit Φ bezeichnet und gaußsche Summenfunktion (bzw. auch gaußsche Integralfunktion oder GAUSSsches Fehlerintegral) genannt.
Es gilt:
  P ( X ≤ a ) = Φ ( a ) = ∫ −   ∞ a ϕ ( x )   d x

Artikel lesen

Pafnuti Lwowitsch Tschebyschew

* 04. Mai 1821 Okatovo (Russland)
† 26. November 1894 St. Petersburg

PAFNUTI LWOWITSCH TSCHEBYSCHEW war einer der bedeutendsten russischen Mathematiker des 19. Jahrhunderts. Er gilt als Begründer der sogenannten Petersburger mathematischen Schule.
Arbeitsschwerpunkte TSCHEBYSCHEWS waren u.a. wahrscheinlichkeitstheoretische Untersuchungen sowie die Approximation (näherungsweise Darstellung) von Funktionen.

Artikel lesen

Die tschebyschewsche Ungleichung

Abschätzungen für Wahrscheinlichkeiten spielen in der Stochastik eine wichtige Rolle, und zwar sowohl bei theoretischen Untersuchungen (Grenzwertsätze) als auch bei praktischen Anwendungen, wenn z.B. nach der noch vertretbaren (hinnehmbaren) Ausschusswahrscheinlichkeit einer Produktionsanlage gefragt wird. Eine der bekanntesten Wahrscheinlichkeitsabschätzungen ist die Ungleichung von TSCHEBYSCHEW.

Artikel lesen

Seeanemone und Einsiedlerkrebs

Ein häufig beschriebenes Beispiel für Symbiosen in der Natur ist die Symbiose zwischen Einsiedlerkrebsen und Seeanemonen. Die unterschiedlichen Symbioseformen zwischen diesen beiden Tierarten (es sind ja unterschiedliche Arten, die auf diese Weise miteinander vergesellschaftet sind) sind so vielzählig, dass heutzutage immer noch neue Formen entdeckt werden. Oftmals nimmt der Krebs beim Umzug in ein neues Schneckenhaus „seine“ Seeanemone mit. Dafür ist ein ganz bestimmtes Verhaltensmuster des Krebses (Bewegungen seiner Scheren) nötig. Doch Seeanemonen gehen noch andere zahlreiche Symbiosen mit Meerestieren ein, z. B. mit Garnelen und Fischen. Wie komplex diese Beziehungen sind, und was sowohl Krebs als auch die Seeanemone charakterisiert, ist im folgenden Artikel beschrieben.

Artikel lesen

Urnenmodelle

In der Wahrscheinlichkeitsrechnung spielt das Ziehen aus einer Urne mit verschiedenfarbigen, aber ansonsten gleichen Kugeln eine besondere Rolle. Es wird als ein gedankliches Modell zur Interpretation praktischer Aufgaben (insbesondere sogenannter Standardsituationen) genutzt.

Artikel lesen

Geometrische Verteilung

Die geometrische Verteilung ist ein Spezialfall der PASCALschen Verteilung, die ihren Namen zu Ehren BLAISE PASCALS (1623 bis 1662) erhielt.

Artikel lesen

Hypergeometrische Verteilung

Werden einer Urne mit genau N Kugeln (davon M weiße und N − M rote) genau n Kugeln „auf gut Glück“ entnommen und gibt die Zufallsgröße X die Anzahl der dabei herausgegriffenen weißen Kugeln an, so ist X hypergeometrisch verteilt, wenn die Kugeln ohne Zurücklegen entnommen werden, - im Unterschied zur Entnahme mit Zurücklegen.
Bevorzugtes Anwendungsgebiet der hypergeometrischen Verteilung ist die statistische Qualitätskontrolle.

Artikel lesen

Die verallgemeinert-hypergeometrische Verteilung

Der hypergeometrischen Verteilung H N ;   M ;   n liegt ein Urnenmodell mit Kugeln von (genau) zwei verschiedenen Farben zugrunde. Verallgemeinert man diese Konstellation auf (genau) r mit r ∈ ℕ \ { 0 ;   1 } verschiedene Farben, so hat man es mit verallgemeinert-hypergeometrischen Zufallsgrößen zu tun.

Artikel lesen

Vierfeldertafeln

Beim Berechnen der Wahrscheinlichkeiten von Ereignissen ist es oft zweckmäßig, sich die entsprechenden Wahrscheinlichkeiten mittels einer Vier- oder Mehrfeldertafel zu veranschaulichen.
In diesem Zusammenhang geht es immer um eine Zerlegung der Ergebnismenge Ω in Ereignisse, von denen bei jeder Realisierung des entsprechenden zufälligen Vorganges stets genau eines eintritt.

Artikel lesen

Bedingte Wahrscheinlichkeit

Der Grad der Gewissheit über das Eintreten eines zufälligen Ereignisses A wird durch seine Wahrscheinlichkeit P ( A ) angegeben.
Liegt jedoch die Information über das Eintreten eines Ereignisses B vor, so kann diese die Bewertung der Eintrittschancen von A verändern, was durch die bedingte Wahrscheinlichkeit P B ( A ) beschrieben wird.

Artikel lesen

Additionssatz für Wahrscheinlichkeiten

Für zwei beliebige Ereignisse A ,   B         ( m i t       A ,   B ⊆ Ω ) gilt:
  P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )
Dieser Additionssatz kann auf drei und mehr Ereignisse verallgemeinert werden.
Spezialfälle des Additionssatzes ergeben sich für unvereinbare bzw. unabhängige Ereignisse A und B.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Rechenregeln für Wahrscheinlichkeiten und ihre Beweise

Für das Rechnen mit Wahrscheinlichkeiten existieren grundlegende Regeln, die aus dem kolmogorowschen Axiomensystem ableitbar sind.
Diese Beweise dieser Rechenregeln gewähren Einblicke in wichtige stochastische Beweismechanismen. So besteht eine häufig angewandte Beweisidee in der Zerlegung eines Ereignisses in zwei geeignete (unvereinbare) Ereignisse.

Artikel lesen

Geometrische Wahrscheinlichkeit

Schon sehr früh in der Geschichte der Wahrscheinlichkeitstheorie hat man sich mit dem Problem des zufälligen Werfens bzw. der zufälligen Auswahl eines Punktes auf bzw. aus einem endlichen Flächenstück beschäftigt. Das mutmaßlich älteste Beispiel geht auf ISAAC NEWTON (1643 bis 1727) zurück. Im 18. Jahrhundert wurde dann der Begriff geometrische Wahrscheinlichkeit eingeführt, da es sich um Zufallsexperimente handelt, deren Versuchsausgänge geometrisch quantitativ messbare Größen sind.

Artikel lesen

Skelett, Fische

Das Skelett des Fischs besteht aus dem Schädel, der Wirbelsäule, den Rippen und den knöchernen Flossenstrahlen. Es ist die Stütze des Fischkörpers. Die Wirbelsäule besteht aus vielen beweglich miteinander verbundenen Wirbeln. Sie verläuft vom Schädel bis zum Schwanz und trägt die Rippen (Gräten).

Mit dem Schädel ist sie fest verwachsen. Wirbelsäule und Rippen schützen die inneren Organe des Fischs.

Tiere, die im Inneren eine Wirbelsäule besitzen, gehören zu den Wirbeltieren. Fische sind also Wirbeltiere.

Skelett eines Fisches
Artikel lesen

Axiome der Wahrscheinlichkeitsrechnung

Die mathematische Beschreibung des Zufalls orientierte sich bis in das 20. Jahrundert hinein vor allem am Modell der Gleichverteilung.
Für den Aufbau einer umfassenden Wahrscheinlichkeitstheorie erweist sich ein solches Herangehen allerdings als zu eng. Heute wird die Wahrscheinlichkeit axiomatisch definiert. Die axiomatische Definition geht auf den russischen Mathematiker ANDREJ NIKOLAJEWITSCH KOLMOGOROW (1903 bis 1987) zurück.

Artikel lesen

Wahrscheinlichkeitsverteilungen, Ermitteln

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Ermitteln von Wahrscheinlichkeitsverteilungen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Pest

Die Pest oder der „Schwarze Tod“ geht um. Im Jahr 1347 klagen in einer kleinen Hafenstadt am Schwarzen Meer plötzlich viele Menschen über Fieber, stechenden Kopfschmerz und zunehmende Schwäche. Der Puls rast, sie können sich nicht mehr auf den Beinen halten, beginnen zu taumeln und sind schließlich nicht mehr in der Lage flüssig zu sprechen. Die Lymphdrüsen schwollen an und nach ein paar Tagen bildeten sich schwarze Flecken auf ihrer Haut. Nach 5 – 6 Tagen waren die Meisten bereits tot. In Windeseile schien sich dieser Schwarze Tod in Europa auszubreiten und die folgenden 400 Jahre waren immer wieder von solchen Pestepidemien begleitet. In den Jahren 1349 bis 1351 fielen mehr als 25 Millionen Menschen dieser Seuche zum Opfer, mehr Menschen also, als durch alle anderen Krankheiten oder Kriege zusammengenommen dahin gerafft wurden. Die Ärzte wussten sich keinen Rat und waren schon über alle Maßen damit beschäftigt, sich selbst vor der schlechten und kranken Luft zu schützen, die für sie der vermeintliche Verursacher der Krankheit war.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Kurvendiskussion einer ganzrationalen Funktion

In den Natur- bzw. Technikwissenschaften versucht man, bestehende Sachverhalte mithilfe von Funktionen zu modellieren und zu beschreiben. Um die vorliegenden Zusammenhänge besser zu verstehen, ist es oft hilfreich, den Verlauf der entsprechenden Funktionsgraphen genauer zu untersuchen. Sofern keine Funktionsplotter zur Verfügung stehen, ist es notwendig, typische Eigenschaften der zu untersuchenden Funktion mithilfe geeigneter Methoden der Analysis zu bestimmen und den Funktionsgraphen danach zu zeichnen.

Artikel lesen

Joseph Louis Lagrange

* 25. Januar 1736 Turin
† 10. April 1813 Paris

JOSEPH LOUIS LAGRANGE hatte entscheidenden Anteil an den in der zweiten Hälfte des 18. Jahrhunderts bzw. zu Beginn des 19. Jahrhunderts erzielten Fortschritten auf den Gebieten der Analysis bzw. der Mechanik (insbesondere der Himmelsmechanik).
LAGRANGE entwickelte u.a. erste allgemeine Methoden der Variationsrechnung und begründete auf analytischem Wege die Bewegungsgleichungen der Mechanik. Sein wohl bedeutendstes Werk ist die „Mécanique analytique“ (Analytische Mechanik).

Artikel lesen

Gottfried Wilhelm Leibniz

* 1. Juli 1646 Leipzig
† 14. November 1716 Hannover

GOTTFRIED WILHELM LEIBNIZ war einer der letzen Universalgelehrten der Neuzeit. Bedeutende wissenschaftliche Leistungen vollbrachte er auf mathematischem und philosophischem Gebiet, aber auch als Physiker und Techniker, Geschichts- und Sprachforscher bzw. Jurist.

Bezüglich der Mathematik sind vor allem seine Arbeiten zur Infinitesimalrechnung sowie zur Logik (Formalisierung der Mathematik) zu nennen. Sein um 1675 entwickelter (aber erst ab 1682 publizierter) „Calculus“ enthält Differenziationszeichen, Regeln zum Differenzieren sowie Aussagen zu Extremwerten und Wendepunkten. Auf LEIBNIZ zurück gehen auch das Integralzeichen sowie die Begriffe Differenzial- und Integralrechnung, Funktion und Koordinaten. Schon vor 1683 entwickelte er eine mechanische Rechenmaschine. LEIBNIZ war Begründer und zugleich erster Präsident der Berliner Akademie der Wissenschaften.

Artikel lesen

Monotonieverhalten von Funktionen

Im Folgenden soll der Zusammenhang zwischen Monotonie und 1. Ableitung untersucht werden.

Seitennummerierung

  • Previous Page
  • Seite 177
  • Seite 178
  • Aktuelle Seite 179
  • Seite 180
  • Seite 181
  • Seite 182
  • Next Page

7690 Suchergebnisse

Fächer
  • Biologie (993)
  • Chemie (1168)
  • Deutsch (965)
  • Englisch (649)
  • Geografie (348)
  • Geschichte (408)
  • Kunst (332)
  • Mathematik (884)
  • Musik (311)
  • Physik (1278)
  • Politik/Wirtschaft (354)
Klassen
  • 5. Klasse (4621)
  • 6. Klasse (4621)
  • 7. Klasse (4621)
  • 8. Klasse (4621)
  • 9. Klasse (4621)
  • 10. Klasse (4621)
  • Oberstufe/Abitur (4820)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026