Direkt zum Inhalt

204 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Glockenförmige Häufigkeitsverteilung

Grafische Darstellungen von Häufigkeitsverteilungen sind oft symmetrisch und lassen für den Fall, dass die Anzahl der Beobachtungsergebnisse nicht zu gering ist, eine annähernd glockenförmige Gestalt erkennen. Lage und Form der „Glocke“ werden durch den Mittelwert x ¯ bzw. die Standardabweichung s bestimmt.

Artikel lesen

Kombinationen

Zu den typischen kombinatorischen Fragestellungen gehören solche, bei denen Zusammenstellungen von k aus n Elementen betrachtet werden, also eine Auswahl vorgenommen wird.
Werden dabei alle möglichen Reihenfolgen der Elemente betrachtet und unterschieden, so spricht man von Variationen, wird die Reihenfolge nicht berücksichtigt von Kombinationen.
(Der Begriff Kombination wird mitunter auch als Oberbegriff für Variation und Kombination verwendet.)

Artikel lesen

Gebrochenrationale Funktionen

Eine Funktion f, deren Funktionsterm ein Quotient zweier Polynome p ( x )  und  q ( x ) ist, heißt gebrochenrationale Funktion. Man unterscheidet zwischen echt und unecht gebrochenrationalen Funktionen.
Durch Polynomdivision kann der Funktionsterm einer unecht gebrochenrationalen Funktion in einen ganzrationalen und einen echt gebrochenrationalen Term zerlegt werden.

Artikel lesen

Funktionen von mehreren Variablen

Der Funktionsbegriff lässt sich für Funktionen mit zwei und mehr (unabhängigen) Variablen erweitern.
Elemente der Definitionsmenge sind dann Zahlenpaare, Zahlentripel bzw. n-Tupel.
Funktionen mit zwei unabhängigen Variablen lassen sich als Flächen im dreidimensionalen Raum darstellen.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Verknüpfen von Funktionen

Funktionen mit einem gemeinsamen Definitionsbereich können addiert, subtrahiert und multipliziert werden, d.h., es gilt:
  ( f + g ) ( x ) = f ( x ) + g ( x ) ( f − g ) ( x ) = f ( x ) − g ( x ) ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x )

Wenn g ( x ) ≠ 0 ist, dann lässt sich auch der Kehrwert ( 1 g ) ( x ) = 1 g ( x ) und der Quotient ( f g ) ( x ) = f ( x ) g ( x ) bilden.

Artikel lesen

Funktionen mit der Gleichung y = mx

Jeder direkt proportionale Zusammenhang zwischen zwei Größen x und y kann durch eine spezielle lineare Funktion mit der Gleichung
  y = f ( x ) = m x   ( m x ≠ 0 )
beschrieben werden.
Definitonsbereich und Wertevorrat (Wertebereich) von f ist die Menge der reellen Zahlen ℝ . Der Graph von f ist eine Gerade, die durch den Koordinatenursprung O verläuft.

Artikel lesen

Funktionen mit der Gleichung y = f(x) = mx + n

Eine Funktion f mit einer Gleichung der Form
  y = f ( x ) = m x + n   ( m ,   n ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt lineare Funktion.
Für lineare Funktionen ist der Definitionsbereich im Allgemeinen die Menge der reellen Zahlen (so nicht das mathematische oder das entsprechenden Anwendungsproblem einen Einschränkung verlangt), was dann auch für den Wertebereich ( m ,   n ≠ 0 ) gilt. Die Zahlen m und n sind Parameter.

Artikel lesen

Inverse Funktion (Umkehrfunktion)

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Artikel lesen

Monotonie von Funktionen

Graphen von Funktionen können in bestimmten Intervallen steigen, fallen oder parallel zur x-Achse verlaufen.

Artikel lesen

Logarithmusfunktionen

Funktionen mit Gleichungen der Form y = f ( x ) = log a   x   ( a ,   x ∈ ℝ ;       a ,   x > 0;       a ≠ 1 )
heißen Logarithmusfunktionen.
Von besonderer Bedeutung sind die Logarithmusfunktionen mit den Basen 10 und 2 sowie der eulerschen Zahl e.

Artikel lesen

Nullstellen ganzrationaler Funktionen (dritten und höheren Grades)

Allgemein versteht man unter einer Nullstelle einer Funktion f diejenige Zahl x 0 ∈ D f , für die f ( x 0 ) = 0 gilt. Nullstellen zu berechnen heißt demnach, alle Lösungen der Gleichung f ( x ) = 0 zu ermitteln.
Diese kann man rechnerisch durch Anwenden der äquivalenten Umformungsregeln, Verwenden von Lösungsformeln u.a. sowie Anwenden von Näherungsverfahren  bestimmen.

Artikel lesen

Nullstellen gebrochenrationaler Funktionen

Nullstellen einer gebrochenrationalen Funktion sind alle Nullstellen der ganzrationalen Zählerfunktion, die nicht gleichzeitig Nullstellen der Nennerfunktion sind. Damit ist das Bestimmen der Nullstellen gebrochenrationaler Funktionen auf die Nullstellenermittlung ganzrationaler Funktionen zurückgeführt.

Artikel lesen

Nullstellen linearer und quadratischer Funktionen

Eine lineare Funktion f mit f ( x ) = m x + n       ( mit       m ,   n ∈ ℝ ;       m ≠ 0 ) besitzt genau eine Nullstelle x 0 , sie berechnet sich nach x 0 = −   n m .
Eine quadratische Funktion f mit f ( x ) = a x 2 + b x + c hat maximal zwei Nullstellen. Diese ergeben sich als (mögliche) Lösungen der Gleichung a x 2 + b x + c = 0 .

Artikel lesen

Nullstellen von Wurzelfunktionen sowie Exponential- und Logarithmusfunktionen

Wurzelfunktionen sowie Exponential- und Logarithmusfunktionen gehören zur Klasse der nichtrationalen Funktionen. Zum Bestimmen der Nullstellen jener Funktionen untersucht man, an welchen Stellen f ( x ) = 0 gilt.
Dabei ist der jeweilige Definitionsbereich der Funktion zu beachten.
Die Graphen der „reinen“ Exponentialfunktionen der Form f ( x ) = a x       ( mit       a ,   c ,   x ∈ ℝ ;       a > 0 ;       a ≠ 1 ) verlaufen stets oberhalb der x-Achse und schneiden die y-Achse im Punkte ( 0 ;     1 ) , sie besitzen keine Nullstellen.
Alle „reinen“ Logarithmusfunktionen (als Umkehrfunktionen der Exponentialfunktionen zur gleichen Basis) besitzen eine Nullstelle für x 0 = 1 .

Artikel lesen

Nullstellen trigonometrischer Funktionen

Viele periodische Vorgänge lassen sich durch Funktionen der Form f ( x ) = a ⋅ sin ( b ⋅ ( x − c ) ) beschreiben. Deren Graphen entstehen aus dem Graphen der Sinusfunktion durch Streckung (Stauchung) in Richtung der Koordinatenachsen und Verschiebung in Richtung der x-Achse, woraus sich Schlussfolgerungen für die Nullstellen ziehen lassen.
Für mit anderen Funktionen verkettete Sinus- und Kosinusfunktionen führt das Bestimmen der Nullstellen auf das Lösen goniometrischer Gleichungen.

Artikel lesen

Potenzfunktionen

Unter Potenzfunktionen werden Funktionen mit Gleichungen der folgenden Form verstanden:
  y = f ( x ) = x n     ( x ∈ ℝ ;       n ∈ ℤ \ { 0 } )
Ihre Graphen nennt man Parabeln ( n > 0 ) bzw. Hyperbeln ( n < 0 ) n-ter Ordnung.

Artikel lesen

Streckung, Stauchung und Spiegelung von Graphen quadratischer Funktionen

Der Graph einer quadratischen Funktion mit der Gleichung y = f   ( x ) = a x 2 + b x + c ist für a = 1 eine (ggf. verschobene) Normalparabel.
Für a ≠ 1 erhalten wir als Graph im Vergleich zum Graphen von y = f   ( x ) = x 2 + b x + c eine (in y-Richtung) gestreckte bzw. gestauchte und gegebenenfalls an der x-Achse gespiegelte Parabel.

Artikel lesen

Winkelfunktionen

Die bezüglich eines rechtwinkligen Dreiecks formulierten Definitionen des Sinus und des Kosinus (wie auch des Tangens und des Kotangens) eines Winkels können auf einen beliebigen Kreis oder speziell auch auf einen Einheitskreis (also einen Kreis mit dem Radius r = 1 Längeneinheit) übertragen werden.

Artikel lesen

Beziehungen zwischen Winkeln und Seiten am rechtwinkligen Dreieck (Winkelfunktionen)

Bei allen zueinander ähnlichen rechtwinkligen Dreiecken sind die Quotienten aus den Längen von je zwei einander entsprechenden Seiten gleich.

Artikel lesen

Graphen und Eigenschaften von Winkelfunktionen

Graphen von Winkelfunktionen kann man auf die bekannte Weise unter Verwendung einer Wertetabelle zeichnen. Es ist allerdings auch möglich, ausgehend von der Definition dieser Funktionen am Einheitskreis die zu einem Winkel als Abszisse eines Graphenpunktes gehörende Ordinate sofort aus der Zeichnung zu entnehmen. Aus der Konstruktion der Funktionsgraphen lassen sich einige wichtige Eigenschaften der entsprechenden Winkelfunktionen schlussfolgern.

Artikel lesen

Winkelfunktionen y = f(x) = a sin (bx + c)

Besonders bei der mathematischen Beschreibung von Schwingungsvorgängen wird häufig von Winkelfunktionen, speziell der Sinusfunktion mit Gleichungen der Form y = f ( x ) = a ⋅ sin ( b x + c ) Gebrauch gemacht.
Bezogen auf den Graphen von f nennt man deshalb a auch die Amplitude der Sinuskurve, b deren Frequenz und c ihre Phasenverschiebung.

Artikel lesen

Anwendung transzendenter Funktionen bei der Zinseszinsrechnung

Wird ein festes Kapital K mehrere Jahre verzinst, ohne dass die Zinsen am Jahresende abgehoben werden, so werden auch die jeweils angefallen Zinsen mit verzinst. Man spricht in diesem Fall von der sogenannten Zinseszinsrechnung. Diese stellt eine wichtige Anwendung transzendenter Funktionen dar.

Artikel lesen

Gleichungen mit absoluten Beträgen

Gleichungen, bei denen von der Variablen (Unbekannten) direkt oder indirekt der absolute Betrag angegeben ist, sind weder der Gruppe der algebraischen Gleichungen noch der Gruppe der transzendenten Gleichungen zuzuordnen.
Beim Lösen von Gleichungen mit Beträgen sind Fallunterscheidungen vornehmen.
Dies wird für lineare und quadratische Gleichungen demonstriert.

Seitennummerierung

  • Previous Page
  • Seite 4
  • Seite 5
  • Seite 6
  • Aktuelle Seite 7
  • Seite 8
  • Seite 9
  • Next Page

204 Suchergebnisse

Fächer
  • Mathematik (204)
Klassen
  • 5. Klasse (94)
  • 6. Klasse (94)
  • 7. Klasse (94)
  • 8. Klasse (94)
  • 9. Klasse (94)
  • 10. Klasse (94)
  • Oberstufe/Abitur (110)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025