Direkt zum Inhalt

181 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Multiplikation einer Matrix mit einem Vektor

Für die Produktbildung A ⋅ c → (Multiplikation einer Matrix mit einem Vektor) muss vorausgesetzt werden, dass die Anzahl der Spalten in der Matrix A mit der Anzahl der Koordinaten des Vektors c → übereinstimmt.
Die Koordinaten des neuen Spaltenvektors, der durch die Multiplikation A ⋅ c → entsteht, erhält man jeweils als Summe der Koordinatenprodukte eines Zeilenvektors von A und des Spaltenvektors c → .

Artikel lesen

Laplace-Experimente

Ein Zufallsexperiment (Zufallsversuch) mit einer endlichen Ergebnismenge Ω = { e 1 ;   e 2 ;   ... ;   e n } heißt LAPLACE-Experiment, wenn es der LAPLACE-Annahme genügt, d.h. wenn alle seine atomaren Ereignisse gleichwahrscheinlich sind, d.h. wenn diese jeweils mit derselben Wahrscheinlichkeit P ( { e 1 } ) = P ( { e 2 } ) = ... = P ( { e n } ) eintreten.

Artikel lesen

Rekursive Definitionen spezieller Zahlenfolgen

Eine Möglichkeit der Darstellung einer Zahlenfolge ist die Angabe einer rekursive Bildungsvorschrift.
Eine rekursive Bildungsvorschrift gibt an, wie man ein beliebiges Glied a n   +1 einer Zahlenfolge aus seinem Vorgänger a n oder auch aus mehreren Vorgängern a n ,       a n   −   1 usw. gewinnen kann und wie das Anfangsglied a 1 (und ggf. auch noch darauf folgende Glieder) der Folge lautet (lauten).
Beispiel für rekursiv definierte Folgen sind die FIBONACCI-Folge und die sogenannte ( 3 n + 1 ) -Folge (ULAM-Folge).

Artikel lesen

Exponentieller Zerfall und exponentielles Wachstum

Viele Wachstums- und Zerfallsprozesse in Natur und Technik verlaufen exponentiell. Hierzu gehören u.a. das Wirtschaftswachstum, die Entwicklung von Tierpopulationen bzw. der radioaktive Zerfall. Idealisiert erfolgt eine Beschreibung dieser Prozesse meist durch die Differenzialgleichung d N d t = − λ ⋅ N .
Die Betrachtung realer Wachstumsprozesse in der Natur führt zum mathematischen Modell „Gebremstes Wachstum“. Berücksichtigt man, dass viele Prozesse nicht kontinuierlich, sondern quantenhaft verlaufen, lassen sie sich oftmals besser durch Rekursionsgleichungen beschreiben.

Artikel lesen

Kurven in Polarkoordinatendarstellung

Kegelschnitte können auch in Polarkoordinatendarstellung angegeben werde.
Die Darstellung mithilfe von Polarkoordinaten wird auch benutzt für Spiralen, Schraubenlinien und cassinische Kurven.

Artikel lesen

Schwerpunkt eines Dreiecks

Der Schwerpunkt S des Dreiecks P 1   P 2   P 3 ist der Schnittpunkt der Seitenhalbierenden. Er teilt diese (vom jeweiligen Eckpunkt des Dreiecks her gesehen) im Verhältnis 2 : 1.
Im Folgenden sollen die Koordinaten des Schwerpunktes S ( x S ;   y S ;   z S ) eines Dreiecks P 1   P 2   P 3 bestimmt werden.

Artikel lesen

Logarithmusgleichungen

Eine Gleichung nennt man Logarithmengleichung, wenn mindestens eine freie Variable (Unbekannte) als Logarithmus (zu einer beliebigen Basis a) auftritt.

Artikel lesen

Lösbarkeitskriterien für inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem besitzt nur dann Lösungen, wenn der Rang der Koeffizientenmatrix gleich dem Rang der erweiterten Koeffizientenmatrix ist. Ist dieser gleich der Anzahl der Variablen, so existiert genau eine Lösung; ist er kleiner als die Anzahl der Variablen, dann existieren unendlich viele Lösungen.
Ist der Rang der Koeffizientenmatrix kleiner als der Rang der erweiterten Koeffizientenmatrix, dann besitzt das Gleichungssystem keine Lösung.

Artikel lesen

Cramersche Regel

Lineare Gleichungssysteme können mithilfe von Determinanten gelöst werden. Eine entsprechende Regel dazu entwickelte der Schweizer Mathematiker GABRIEL CRAMER (1704 bis 1752).

Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Krümmung und Wendepunkt

Durchfährt ein Rennfahrer beispielsweise die Grand-Prix-Strecke des Eurospeedway Lausitz, so muss er seinen Wagen durch eine Vielzahl von Links- und Rechtskurven mit dazwischenliegenden „Wendestellen“ lenken.

Die Graphen monotoner Funktionen kann man in ähnlicher Weise auf ihr sogenanntes Krümmungsverhalten bzw. auf Wendestellen untersuchen.

Artikel lesen

Korrelation und lineare Regression

Die grafische Darstellung von Wertepaaren ( x i ;   y i ) zweier Größen X und Y führt häufig zu einer Menge von Punkten, die nicht ohne Weiteres einer Funktion bzw. einer Kurve zugeordnet werden können.
Es stellt sich die Frage, ob zwischen den Größen eine Abhängigkeit besteht.
Oftmals ist in solchen Fällen eine Funktion gesucht, deren Graph möglichst nahe an allen Punkten liegt.
Dies führt zur Definition der Korrelation sowie der Regression.

Artikel lesen

Heisenbergsche Unbestimmtheitsrelation

An der Entwicklung und der Interpretation der Quantenphysik waren viele bedeutende Physiker beteiligt. Entscheidende Schritte wurden in den zwanziger Jahren des 20. Jahrhundert gegangen. 1927 veröffentlichte NIELS BOHR sein Komplementaritätsprinzip. Im gleichen Jahr formulierte WERNER HEISENBERG die Unbestimmtheitsrelation. Sie besagt, dass der Ort und der Impuls eines Quantenobjektes nicht gleichzeitig genau bestimmt werden können und wird häufig folgender mathematischen Beziehung angegeben:
Δ x ⋅ Δ p ≥ h 4 π

Das ist eine, aber nicht die einzige Möglichkeit, die heisenbergsche Unbestimmtheitsrelation zu formulieren.

Artikel lesen

Bohrsches Atommodell

Der dänische Physiker NIELS BOHR (1885-1962) entwickelte 1913 das von dem britischen Physiker ERNEST RUTHERFORD (1871-1937) im Jahre 1911 angegebene Atommodell weiter, wobei er das Kern-Hülle-Modell mit Quantenvorstellungen verband. Bohr formulierte für sein Atommodell, das man als bohrsches Atommodell bezeichnet, einige grundlegende Postulate. Ein Vorteil dieses Atommodells war, dass man mit ihm die Emission und Absorption von Strahlung erklären konnte. Für Wasserstoff konnten auch die Spektrallinien berechnet werden. Entscheidende Nachteile waren, dass es bei anderen Atomen als Wasserstoff versagt und im Widerspruch zu quantenphysikalischen Erkenntnissen von der Vorstellung bestimmter Bahnen der Elektronen ausgeht.

Artikel lesen

Größen zur Beschreibung radioaktiver Strahlung

Radioaktive Strahlung kann durch verschiedene physikalische Größen beschrieben werden, wobei sich die Größen teilweise auf die Strahlungsquelle und teilweise auf die Körper beziehen, die radioaktiver Strahlung ausgesetzt sind. Die wichtigsten Größen sind die Aktivität, die Äquivalentdosis, die Energiedosis, die Energiedosisleistung und die Ionendosis.

Artikel lesen

Grundexperimente zur Atomphysik

Für die Entstehung der Atomphysik und die Durchsetzung der Atomhypothese spielten eine Reihe von grundlegenden Experimenten und Beobachtungen eine herausragende Rolle. Dazu gehören u.a. die Streuversuche von PHILIPP LENARD und ERNEST RUTHERFORD, aber auch die spektroskopischen Untersuchungen, die in der zweiten Hälfte des 19. Jahrhunderts von verschiedenen Physikern durchgeführt und interpretiert wurden. In dem Beitrag sind ausgewählte Experimente dargestellt und in ihrer Bedeutung für die Entwicklung der Atomphysik charakterisiert.

Artikel lesen

Das Tröpfchenmodell

Die Atommodelle von E. RUTHERFORD (1911) und N. BOHR (1913) waren Modelle für die Atomhülle. Vom Atomkern war in dieser Zeit lediglich bekannt, dass in ihm weitgehend die Masse des Atoms konzentriert ist und er eine positive Ladung trägt. Genauere Vorstellungen über seine Struktur entwickelten sich erst ab den dreißiger Jahren des 20. Jahrhundert im Zusammenhang mit dem experimentellen Nachweis des Neutrons durch J. CHADWICK (1932) und den weiteren Untersuchungen zu Kernumwandlungen, die u. a. von E. FERMI, F. JOLIOT-CURIE und O. HAHN durchgeführt wurden. Als besonders tragfähig erwiesen sich das Tröpfchenmodell und das Potenzialtopfmodell.

Artikel lesen

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Artikel lesen

Äquivalenz von Masse und Energie

ALBERT EINSTEIN formulierte in seiner berühmten Arbeit zur speziellen Relativitätstheorie im Jahre 1905: „Die Masse eines Körpers ist ein Maß für dessen Energiegehalt“. Er stellte fest, dass Masse und Energie äquivalente Größen sind und zwischen diesen Größen der fundamentale Zusammenhang E = m ⋅ c 2 existiert. Diese Gleichung ist die Grundlage für das Verständnis der Energiefreisetzung durch Kernspaltung und Kernfusion sowie vieler weiterer physikalischer Prozesse.

Artikel lesen

Akustischer und optischer DOPPLER-Effekt

Der österreichische Physiker CHRISTIAN DOPPLER (1803-1853) entdeckte 1842, dass zwischen der von einem Beobachter wahrgenommenen Tonfrequenz und der Bewegung einer Schallquelle ein Zusammenhang besteht. Dieser Effekt wird als akustischer DOPPLER-Effekt bezeichnet.
Ein analoger Effekt tritt bei Licht auf. Er wird optischer oder relativistischer DOPPLER-Effekt genannt.

Artikel lesen

Erhaltungssätze in der speziellen Relativitätstheorie

In der klassischen Physik gilt für abgeschlossene Systeme neben dem Gesetz von der Erhaltung der Masse der Energieerhaltungssatz und der Impulserhaltungssatz.
Aus relativistischer Sicht ergibt sich: Aufgrund der Äquivalenz von Masse und Energie umfasst der Energieerhaltungssatz auch das Gesetz von der Erhaltung der Masse. Auch Impulserhaltungssatz und Energieerhaltungssatz sind miteinander verknüpft.

Artikel lesen

Längenkontraktion

In der klassischen Physik hat die Länge eines Körpers und damit der Abstand zweier Punkte einen bestimmten, stets gleichen Wert. In der Relativitätstheorie dagegen zeigt sich, dass die Länge eines Körpers vom Bezugssystem abhängig ist. Längenkontraktion bedeutet:
In seinem Ruhesystem hat ein Körper seine größte Länge, die Eigenlänge. In einem dazu bewegten System ist die Länge um den Faktor 1 / k = 1 − v 2 / c 2 (Kehrwert des LORENTZ-Faktors) geringer.

Artikel lesen

LORENTZ-Transformation

Im Zusammenhang mit der Entwicklung seiner Elektronentheorie beschäftigte sich der niederländische Physiker HENDRIK ANTOON LORENTZ auch mit der Elektrodynamik bewegter Körper und mit der Deutung des MICHELSON-MORLEY-Experiments. Er entwickelte 1895 auf der Grundlage der klassischen Vorstellungen Gleichungen, die es ermöglichten, die räumlichen und zeitlichen Koordinaten von einem Inertialsystem in ein anderes umzurechnen. Diese Gleichungen werden als LORENTZ-Transformationsgleichungen oder als LORENTZ-Transformation bezeichnet. Die richtige physikalische Deutung erhielten sie 10 Jahre später durch ALBERT EINSTEIN in seiner speziellen Relativitätstheorie.

Artikel lesen

Ruheenergie und Gesamtenergie

In der klassischen Physik setzt sich die Energie eines Körpers additiv aus den Energieformen zusammen, die er hat. Masse und Energie sind voneinander unabhängige Größen.
In relativistischer Betrachtungsweise spielt wegen der Äquivalenz von Masse und Energie die Masse des Körpers für die ihm zuzuordnende Energie eine wichtige Rolle. Dabei ist zwischen seiner Ruheenergie und seiner Gesamtenergie zu unterscheiden.

Artikel lesen

Zeitdilatation

In der klassischen Physik wird von einer absoluten Zeit ausgegangen, die überall gleichmäßig verläuft. In der speziellen Relativitätstheorie dagegen ist der Zeitbegriff zu relativieren. Die Zeit ist nicht absolut, sondern es gilt vielmehr: Eine bewegte Uhr geht langsamer als eine ruhende Uhr. Ein physikalischer Vorgang dauert in seinem Ruhesystem nicht so lange wie der gleiche Vorgang in einem dazu bewegten System. Diese Erscheinung wird als Zeitdilatation bezeichnet.

Seitennummerierung

  • Previous Page
  • Seite 3
  • Seite 4
  • Aktuelle Seite 5
  • Seite 6
  • Seite 7
  • Seite 8
  • Next Page

181 Suchergebnisse

Fächer
  • Biologie (2)
  • Chemie (23)
  • Mathematik (17)
  • Physik (139)
Klassen
  • 5. Klasse (132)
  • 6. Klasse (132)
  • 7. Klasse (132)
  • 8. Klasse (132)
  • 9. Klasse (132)
  • 10. Klasse (132)
  • Oberstufe/Abitur (181)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025