Direkt zum Inhalt

23 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Vollkommene Zahlen

Eine Zahl, die gleich der Summe ihrer echten Teiler ist, heißt vollkommene Zahl. Die ersten vier vollkommenen Zahlen 6, 28, 496 und 8128 waren bereits den alten Griechen bekannt.

Artikel lesen

Exponentialfunktionen

Funktionen mit Gleichungen der Form
  y = f ( x ) = a x   ( a ∈ ℝ ;       a > 0 ;       a ≠ 1 )
heißen Exponentialfunktionen. Ihr Definitionsbereich ist die Menge ℝ der reellen Zahlen.

Artikel lesen

Primzahlen, Historisches

Schon die Mathematiker der Antike suchten nach einem Verfahren zum Finden von Primzahlen. Bekannt ist ERATOSTHENES (um 230 v. Chr.) der mit dem nach ihm benannten Sieb eine Methode angab, die Primzahlen der Reihe nach zu ermitteln.
Auch PIERRE DE FERMAT, LEONHARD EULER und MARIN MERSENNE haben viel zur Erforschung der Primzahlen beigetragen.

Artikel lesen

Fermatsche Vermutung

Viel Interesse hat bei Mathematikern und Laien die Frage gefunden, ob es pythagoreische Zahlentripel gibt, für welche die Beziehung a 3 + b 3 = c 3 (oder allgemeiner a n + b n = c n mit n > 2) gilt.
PIERRE DE FERMAT (1601 bis 1665) äußerte die Vermutung, dass dies nicht der Fall sei und gab an, einen Beweis dafür gefunden zu haben.

Artikel lesen

Platonische Körper

Unter den Vielflächnern (Polyedern) spielen diejenigen, die nur von regelmäßigen untereinander kongruenten Vielecken (n-Ecken) begrenzt sind, eine besondere Rolle.
Diese regelmäßigen (regulären) Polyeder werden nach dem griechischen Philosophen PLATON (427 bis 347 v. Chr.) als platonische Körper bzw. als kosmische Körper bezeichnet.

Artikel lesen

Daniel Bernoulli

DANIEL BERNOULLI, Schweizer Mathematiker, Physiker und Mediziner
* 08.02.1700 Groningen
† 17.03.1782 Basel

Auf mathematischem Gebiet beschäftigte sich DANIEL BERNOULLI vor allem mit Problemen der Wahrscheinlichkeitsrechnung. Das sogenannte Petersburger Paradoxon konnte erst Anfang des 20. Jahrhunderts gelöst werden. Große Anerkennung erreichte DANIEL BERNOULLI für seine wissenschaftlichen Leistungen auf dem Gebiet der Differenzialrechnung.

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft, Technik, Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden: LEIBNIZ verwendete 1692 erstmals das Wort Funktion, von JOHANN BERNOULLI stammt die erste Definition und auch EULER trug zur Präzisierung bei.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D eindeutig ein Element y aus einer Menge W zuordnet. D heißt der Definitionsbereich, W der Wertebereich der Funktion f. Man nennt x ∈ D ein Argument, das zugeordnete Element y ∈ W den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u. a. in der Form y = f   ( x ) an.

Artikel lesen

Trigonometrie, Geschichte

Die Bezeichnung Trigonometrie kommt aus dem Griechischen und setzt sich aus den griechischen Wörtern für „drei“, „Winkel“ und „messen“ zusammen.
Die Anfänge trigonometrischer Kenntnisse sind nicht bekannt. Belegt ist, dass im Altertum Babylonier, Chinesen und Ägypter Zusammenhänge zwischen Winkeln und Längen kannten und benutzt haben.
Die heute übliche Formelsprache ist aber erst im 18. Jahrhundert von dem Schweizer Mathematiker LEONHARD EULER geschaffen worden.

Artikel lesen

Sehnen- und Sinustafeln

HIPPARCHOS VON NIKAIA (etwa 190 bis 125 v. Chr.), einer der bedeutendsten Astronomen der Antike, gilt als Begründer der sphärischen Trigonometrie. Seine Bücher sind nicht erhalten geblieben, er besaß aber wahrscheinlich Sehnentafeln. In der Antike wurden Tafeln, die Zusammenhänge zwischen Winkeln und Längen erfassten, auf den Kreis bezogen (deshalb Sehnentafeln), erst im 16. Jahrhundert erfolgte der Übergang zum rechtwinkligen Dreieck.

Artikel lesen

Pythagoreische Zahlentripel

Drei Zahlen a, b und c, für die a 2 + b 2 = c 2 gilt, bilden ein sogenanntes pythagoreisches Zahlentripel.

Pythagoreische Zahlentripel sind zum Beispiel:

  • 3, 4 und 5, denn 9 + 16 = 25
  • 5, 12 und 13, denn 25 + 144 = 169
  • 8, 15 und 17, denn 64 + 225 = 289
  • 9, 40 und 41, denn 81 + 1600 = 1681
Artikel lesen

Algebraische Gleichungen

In einer algebraischen Gleichung werden mit der Variablen nur algebraische Rechenoperationen vorgenommen, d. h., die Variablen werden addiert, subtrahiert, multipliziert, dividiert bzw. potenziert oder radiziert.
Jede algebraische Gleichung kann in der folgenden allgemeinen Form dargestellt werden:
  a n x n + a n − 1 x n − 1 + ... + a 2 x 2 + a 1 x + a 0 = 0

Artikel lesen

Pierre Simon de Laplace

* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der Wahrscheinlichkeitsrechnung, der höheren Analysis sowie der Himmelsmechanik.
So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Artikel lesen

Euklid von Alexandria

* etwa 365 v.Chr.
† etwa 300 v.Chr.

EUKLID fasste in den „Elementen“ wesentliche Teile des mathematischen Wissens seiner Zeit zusammen und gründete es auf Axiome und Postulate (Axiomensystem der euklidischen Geometrie). EUKLIDS fünftes Postulat, das sogenannte Parallelenaxiom, spielte in der Geschichte der Mathematik eine besondere Rolle. Der Versuch, dieses Axioms zu beweisen, führte zu einer Gabelung in die euklidische Geometrie einerseits und in nichteuklidische Geometrien andererseits.
Bekannt sind ferner Arbeiten EUKLIDS zur geometrischen Optik.

Artikel lesen

Christian Goldbach

* 18. März 1690 Königsberg
† 20. November 1764 St. Petersburg

CHRISTIAN GOLDBACH wirkte vor allem an der Petersburger Akademie, deren ständiger Sekretär er war. Er korrespondierte mit vielen europäischen Gelehrten seiner Zeit.
Auf mathematischem Gebiet beschäftigte er sich vor allem mit der Zahlentheorie sowie mit Problemen der Reihenlehre. Auf ihn geht die goldbachsche Vermutung zurück.

Artikel lesen

Zur Geschichte der komplexen Zahlen

In der Geschichte der Mathematik führt der Weg zu den komplexen Zahlen über die Untersuchung von Quadratwurzeln mit negativem Radikanden.
Es ist ein Zeitraum von fast tausend Jahren, der erforderlich war, um Zahlen der Form a + −   b   ( a ,     b       r e e l l ,       b > 0 ) den Schleier des Unwirklichen zu nehmen und sie als Elemente einer die reellen Zahlen einschließenden Zahlenmenge zu verstehen.

Artikel lesen

Geschichte der Analysis

Die Analysis (oder auch Infinitesimalrechnung) beschäftigt sich im Wesentlichen mit der Differenzial- und Integralrechnung.
Ausgangspunkt für die Integralrechnung war das schon in der Antike betrachtete Problem der Bestimmung des Inhalts von Flächen und Körpern, wie etwa von Rotationskörpern.
Die Differenzialrechnung hat ihre Wurzeln dagegen im Tangentenproblem, mit dem sich Mathematiker im 17. Jahrhundert intensiver beschäftigten.
Im 18. Jahrhundert wurde der Zusammenhang zwischen dem Differenzieren und Integrieren erkannt und im Hauptsatz der Differenzial- und Integralrechnung formuliert. Hierzu trugen wesentlich ISAAC NEWTON und GOTTFRIED WILHELM LEIBNIZ bei.

Artikel lesen

Johann Bernoulli

* 6. August 1667 (27. Juli 1667) Basel
† 1. Januar 1748 Basel

JOHANN BERNOULLI trug wesentlich zur Herausbildung moderner Auffassungen zur Infinitesimalrechnung und deren Verbreitung in Europa bei. Gemeinsam mit seinem älteren Bruder JAKOB und in Korrespondenz mit GOTTFRIED WILHELM LEIBNIZ entwickelte er den sogenannten „Leibnizschen Calculus“ weiter, der Begriff Integralrechnung geht auf ihn zurück.
Intensiv beschäftigte sich JOHANN BERNOULLI mit Anwendungen der Infinitesimalrechung auf physikalische und technische Probleme, zum Beispiel untersuchte er das Verhalten strömender Flüssigkeiten.

Artikel lesen

Joseph Louis Lagrange

* 25. Januar 1736 Turin
† 10. April 1813 Paris

JOSEPH LOUIS LAGRANGE hatte entscheidenden Anteil an den in der zweiten Hälfte des 18. Jahrhunderts bzw. zu Beginn des 19. Jahrhunderts erzielten Fortschritten auf den Gebieten der Analysis bzw. der Mechanik (insbesondere der Himmelsmechanik).
LAGRANGE entwickelte u.a. erste allgemeine Methoden der Variationsrechnung und begründete auf analytischem Wege die Bewegungsgleichungen der Mechanik. Sein wohl bedeutendstes Werk ist die „Mécanique analytique“ (Analytische Mechanik).

Artikel lesen

Mathematik

Die Mathematik ist vor allem gekennzeichnet durch ihren weitestgehend deduktiven (axiomatischen) Aufbau, durch die Genauigkeit ihrer Begriffe sowie die Strenge ihrer Beweise. Sie steht in enger Wechselbeziehung mit anderen Wissenschaften, insbesondere den Naturwissenschaften.
Im Folgenden werden Informationen zu Teilgebieten und zur Geschichte der Mathematik gegeben.

Artikel lesen

Kombinatorik

Die Kombinatorik ist ein Zweig der Mathematik, der die verschiedenen Möglichkeiten der Anordnung von Objekten oder Zahlen untersucht. Sie ist Grundlage vieler Gebiete der Mathematik, insbesondere der beschreibenden Statistik und Wahrscheinlichkeitsrechnung.

Artikel lesen

John Venn

* 4. August 1834 Hull, Humberside;
† 4. April 1923 Cambridge

JOHN VENN arbeitete vor allem auf dem Gebiet der mathematischen Logik. Bekannt wurde er als Schöpfer von Diagrammen zur mathematischen Logik bzw. Mengenlehre.
Mithilfe eines Systems sich überschneidender Kreise bzw. Ellipsen brachte er Beziehungen zwischen Klassen, Mengen bzw. Begriffen zum Ausdruck. Diese Darstellungen stellen eine Weiterentwicklung von Diagrammen dar, wie sie beispielweise schon bei LEONHARD EULER (eulersche Kreise) verwendet wurden.

Artikel lesen

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft und Technik sowie in Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D f eindeutig ein Element y aus einer Menge W f zuordnet. D f heißt der Definitionsbereich, W f der Wertebereich der Funktion f. Man nennt x ∈ D f ein Argument, das zugeordnete Element y ∈ W f den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u.a. in der Form y = f ( x ) an.

23 Suchergebnisse

Fächer
  • Mathematik (23)
Klassen
  • 5. Klasse (13)
  • 6. Klasse (13)
  • 7. Klasse (13)
  • 8. Klasse (13)
  • 9. Klasse (13)
  • 10. Klasse (13)
  • Oberstufe/Abitur (10)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025