Direkt zum Inhalt

117 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gebrochenrationale Funktionen

Eine Funktion f, deren Funktionsterm ein Quotient zweier Polynome p ( x )  und  q ( x ) ist, heißt gebrochenrationale Funktion. Man unterscheidet zwischen echt und unecht gebrochenrationalen Funktionen.
Durch Polynomdivision kann der Funktionsterm einer unecht gebrochenrationalen Funktion in einen ganzrationalen und einen echt gebrochenrationalen Term zerlegt werden.

Artikel lesen

Funktionen von mehreren Variablen

Der Funktionsbegriff lässt sich für Funktionen mit zwei und mehr (unabhängigen) Variablen erweitern.
Elemente der Definitionsmenge sind dann Zahlenpaare, Zahlentripel bzw. n-Tupel.
Funktionen mit zwei unabhängigen Variablen lassen sich als Flächen im dreidimensionalen Raum darstellen.

Artikel lesen

Quadratische Funktionen

Eine Funktion mit einer Gleichung der Form
  y = f ( x ) = a x 2 + b x + c   ( mit  a ≠ 0,       x ∈ ℝ )
oder einer Gleichung, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt quadratische Funktion.
Dabei nennt man a x 2 das quadratische Glied, bx das lineare Glied und c das absolute Glied der Funktionsgleichung.
Der Graph einer quadratischen Funktion ist eine Parabel.

Artikel lesen

Funktionenscharen (Verschiebung, Streckung, Stauchung und Spiegelung von Funktionsgraphen)

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z.B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Grenzverhalten von Funktionen

Zusammenhänge aus verschiedensten Praxisbereichen lassen sich mithilfe von Funktionen beschreiben und dadurch bezüglich bestimmter Eigenschaften untersuchen. Neben anderen Eigenschaften kann dabei auch das Grenzverhalten von Funktionen, also die Veränderung ihrer Werte für unbegrenzt wachsende bzw. fallende Argumente bedeutsam sein.

Artikel lesen

Grenzwerte von Zahlenfolgen

Unter dem Grenzwert einer Zahlenfolge ( a n ) versteht man eine Zahl g mit folgender Eigenschaft:
Für jedes ε > 0 liegen fast alle Glieder der Zahlenfolge in der
ε -Umgebung von g, d.h., von einem bestimmten n an gilt |   a n − g   | < ε .
Zahlenfolgen mit dem Grenzwert 0 heißen Nullfolgen

Artikel lesen

Grenzwertsätze für Zahlenfolgen

Bei der Untersuchung von Zahlenfolgen auf Konvergenz sind Grenzwertsätze von Nutzen. Mit deren Hilfe lassen sich Folgen komplizierterer Struktur auf einfachere Zahlenfolgen mit bekannten Grenzwerten zurückführen.

Artikel lesen

Nullfolgen

Unter den konvergenten Zahlenfolgen spielen die mit dem Grenzwert 0 eine besondere Rolle. Sie heißen Nullfolgen und sind u.a. für das Berechnen von Grenzwerten beliebiger Zahlenfolgen von Bedeutung. Die Betrachtung verschiedener Zahlenfolgen führt zu der Folgerung, dass jede geometrische Folge ( a n ) = a 1 ⋅ q n − 1     m i t     |   q   | < 1 eine Nullfolge ist.

Artikel lesen

Stetigkeit

Der Begriff Stetigkeit gehört zu den zentralen Ideen der Differenzial- und Integralrechnung. Wenn man in der Umgangssprache einen bestimmten Vorgang als „stetig“ bezeichnet, so meint man damit, dass er ohne Unterbrechung und ohne sprunghafte Veränderungen abläuft. Eine ganz ähnliche Bedeutung hat der Begriff in der Mathematik.

Artikel lesen

Ableitung einer Funktion

Existiert an der Stelle x 0 des Definitionsbereiches einer Funktion f der Grenzwert
  lim h → 0 f ( x 0 + h ) − f ( x 0 ) h ,
so wird dieser als Ableitung oder Differenzialquotient von f an der Stelle x 0 bezeichnet.
Die Ableitung gibt den Anstieg des Funktionsgraphen an der Stelle x 0 an.

Artikel lesen

Ableitungen höherer Ordnung

Höhere Ableitungen einer Funktion f gestatten Rückschlüsse auf den Verlauf des Funktionsgraphen.
Ein Beispiel praktischer Anwendung höherer Ableitungen stellt die Untersuchung von Bewegungsabläufen in der Physik (etwa der Anfahrfunktion eines Kraftfahrzeuges) dar. Geschwindigkeit und Beschleunigung sind hier als erste bzw. zweite Ableitung des Weges nach der Zeit definiert.

Artikel lesen

Ableitung der Kosinusfunktion

Im Folgenden wird gezeigt, dass die Kosinusfunktion f ( x ) = cos x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = −   sin x   besitzt.
Dazu betrachten wir den Graph der Kosinusfunktion f ( x ) = cos x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Ableitungsfunktion

Existiert der Differenzialquotient einer Funktion y = f ( x ) für alle Punkte eines Intervalls, so ist die Funktion im ganzen Intervall differenzierbar. Jedem x-Wert des Intervalls ist ein Wert des Differenzialquotienten zugeordnet, der also wiederum eine Funktion von x ist. Man nennt diese die abgeleitete Funktion oder Ableitungsfunktion (oder kurz Ableitung):
  f ′ :     x → f ′ ( x )
Anmerkung: f heißt Stammfunktion zu f ′ .

Artikel lesen

Ableitung der Sinusfunktion

Im Folgenden wird gezeigt, dass die Sinusfunktion f ( x ) = sin x im gesamten Definitionsbereich differenzierbar ist und die Ableitungsfunktion f ' ( x ) = cos x besitzt.
Dazu betrachten wir den Graph der Sinusfunktion f ( x ) = sin x       ( x ∈ ℝ ) im Intervall von 0 bis 2   π .

Artikel lesen

Asymptoten (asymptotische Linien)

Untersucht man ganzrationale Funktionen für beliebige große bzw. kleine x-Werte, so werden auch die Funktionswerte beliebig groß oder klein:
Für x → ±   ∞ gilt |   f ( x )   | = +   ∞ .

Völlig verschieden davon ist das Verhalten gebrochenrationaler Funktionen der Form
f(x) = p(x) q(x) .

Deren Graphen schmiegen sich für beliebig groß bzw. klein werdende Argumente immer mehr an eine Gerade an. Derartige Geraden werden Asymptoten des Graphen der Funktion genannt. Man unterscheidet zwischen waagerechten (horizontalen) und schiefen Asymptoten sowie asymptotischen Linien bzw. Kurven.

Anmerkung: Gelegentlich werden auch die Polgeraden bei vorhandenen Definitionslücken als senkrechte (vertikale) Asymptoten bezeichnet.

Artikel lesen

Definitionslücken

Definitionslücken treten insbesondere bei gebrochenrationalen Funktionen auf. Alle x-Werte, für die die Nennerfunktion den Wert Null annimmt, werden als Definitionslücken bezeichnet.
Man unterscheidet zwischen Polstellen und hebbaren Definitionslücken.

Artikel lesen

Kettenregel der Differenzialrechnung

Im Folgenden soll die Kettenregel der Differenzialrechnung bewiesen werden.
Die Kettenregel besagt: Die Ableitung einer verketteten Funktion ist gleich dem Produkt der Ableitungen von äußerer und innerer Funktion an der jeweiligen Stelle.
Für die Anwendung der Kettenregel ist eine auf der leibnizschen Schreibweise d y d x anstelle von f ' ( x ) beruhende Notation sehr einprägsam.

Seitennummerierung

  • Previous Page
  • Seite 1
  • Seite 2
  • Seite 3
  • Seite 4
  • Aktuelle Seite 5

117 Suchergebnisse

Fächer
  • Mathematik (117)
Klassen
  • 5. Klasse (18)
  • 6. Klasse (18)
  • 7. Klasse (18)
  • 8. Klasse (18)
  • 9. Klasse (18)
  • 10. Klasse (18)
  • Oberstufe/Abitur (99)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2026